About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 579764, 7 pages
http://dx.doi.org/10.1155/2012/579764
Research Article

Analysis and Modeling of Time-Correlated Characteristics of Rainfall-Runoff Similarity in the Upstream Red River Basin

1Quality Development Institute, Kunming University of Science and Technology, Kunming 650093, China
2Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
3Hydrology and Water Resources Bureau of Yunnan, Kunming 650106, China

Received 25 October 2012; Revised 30 November 2012; Accepted 30 November 2012

Academic Editor: Luis Gimeno

Copyright © 2012 Xiuli Sang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. He, S. H. Wu, and H. Peng, “A study of ecosystem changes in Longitudinal Range-Gorge Region and transboundary eco-security in southwest China,” Advances in Earth Science, vol. 20, no. 3, pp. 338–344, 2005.
  2. W. A. Welderufael, P. A. L. Le Roux, and M. Hensley, “Quantifying rainfall-runoff relationships on the Dera Calcic Fluvic Regosol ecotope in Ethiopia,” Agricultural Water Management, vol. 95, no. 11, pp. 1223–1232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Kisi, J. Shiri, and M. Tombul, “Modeling rainfall-runoff process using soft computing techniques,” Computers & Geosciences, vol. 51, pp. 108–117, 2013. View at Publisher · View at Google Scholar
  4. D. Labat, R. Ababou, and A. Mangin, “Rainfall-runoff relations for karstic springs—part I: convolution and spectral analyses,” Journal of Hydrology, vol. 238, no. 3-4, pp. 123–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Rajurkar, U. C. Kothyari, and U. C. Chaube, “Modeling of the daily rainfall-runoff relationship with artificial neural network,” Journal of Hydrology, vol. 285, no. 1–4, pp. 96–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Sven Lavado Casimiro, J. Ronchail, D. Labat, J. C. Espinoza, and J. L. Guyot, “Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages,” Hydrological Sciences Journal, vol. 57, no. 4, pp. 625–642, 2012. View at Publisher · View at Google Scholar
  7. J. C. Zhang, J. Jiang, D. P. Liu, and L. Donald DeAngelis, “Vegetation coverage influence on rainfall-runoff relation based on wavelet analysis,” Journal of American Science, vol. 5, no. 2, pp. 97–104, 2009.
  8. T. Partal and M. Küçük, “Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey),” Physics and Chemistry of the Earth, vol. 31, no. 18, pp. 1189–1200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wang and J. Meng, “Research on runoff variations based on wavelet analysis and wavelet neural network model: a case study of the Heihe River drainage basin (1944-2005),” Journal of Geographical Sciences, vol. 17, no. 3, pp. 327–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. Boughton, “Effect of data length on rainfall-runoff modeling,” Environmental Modelling & Software, vol. 22, no. 3, pp. 406–413, 2007.
  11. L. H. C. Chua and T. S. W. Wong, “Improving event-based rainfall-runoff modeling using a combined artificial neural network-kinematic wave approach,” Journal of Hydrology, vol. 390, no. 1-2, pp. 92–107, 2010. View at Publisher · View at Google Scholar
  12. G. Alaerts, J. van Erps, S. Pieters et al., “Similarity analyses of chromatographic fingerprints as tools for identification and quality control of green tea,” Chemometrics in Chromatograph, vol. 910, pp. 61–67, 2012. View at Publisher · View at Google Scholar
  13. G. F. Lin and C. M. Wang, “A nonlinear rainfall-runoff model embedded with an automated calibration method—part 1: the model,” Journal of Hydrology, vol. 341, no. 3-4, pp. 186–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Yu, C. Yang, C. Liu et al., “Slope runoff study in situ using rainfall simulator in mountainous area of North China,” Journal of Geographical Sciences, vol. 19, no. 4, pp. 461–470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Cao, J. Wang, L. Wang, and Y. Li, “Characteristics and runoff volume of the Yangtze River paleo-valley at Nanjing reach in the Last Glacial Maximum,” Journal of Geographical Sciences, vol. 20, no. 3, pp. 431–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Lin, Y. Zhang, Z. Yao et al., “The trend on runoff variations in the Lhasa River Basin,” Journal of Geographical Sciences, vol. 18, no. 1, pp. 95–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Li and P. Feng, “Runoff variations in the Luanhe River Basin during 1956–2002,” Journal of Geographical Sciences, vol. 17, no. 3, pp. 339–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Jiang, C. Zhou, and W. Cheng, “Streamflow trends and hydrological response to climatic change in Tarim headwater basin,” Journal of Geographical Sciences, vol. 17, no. 1, pp. 51–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Mahé and J. E. Paturel, “1896-2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers,” Comptes Rendus Geoscience, vol. 341, no. 7, pp. 538–546, 2009. View at Publisher · View at Google Scholar · View at Scopus