About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 853405, 12 pages
http://dx.doi.org/10.1155/2012/853405
Research Article

Wood-Burning Device Changeout: Modeling the Impact on PM2.5 Concentrations in a Remote Subarctic Urban Nonattainment Area

Department of Atmospheric Sciences, Geophysical Institute and College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7230, USA

Received 4 January 2012; Accepted 14 February 2012

Academic Editor: Lidia Morawska

Copyright © 2012 Huy N. Q. Tran and Nicole Mölders. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. N. Q. Tran and N. Mölders, “Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska,” Atmospheric Research, vol. 99, no. 1, pp. 39–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. R. Carlson, S. H. Yoon, and R. G. Dulla, “Fairbanks home heating survey,” Tech. Rep., Sierra Research, Sacramento, Calif, USA, 2010.
  3. J. E. Houck and D. R. Broderick, “PM2.5 emission reduction benefits of replacing conventional uncertified cordwood stoves with certified cordwood stoves or modern pellet stoves,” Tech. Rep., Arlington, Va, USA, 2005.
  4. United State Environmental Protection Agency (EPA), “Agencies-changeout guide,” 2011, http://www.epa.gov/burnwise/how-to-guide.html.
  5. United State Environmental Protection Agency (EPA), “Agencies—case studies,” 2011, http://www.epa.gov/burnwise/casestudies.html.
  6. M. A. Bergauff, T. J. Ward, C. W. Noonan, and C. P. Palmer, “The effect of a woodstove changeout on ambient levels of PM2.5 and chemical tracers for woodsmoke in Libby, Montana,” Atmospheric Environment, vol. 43, no. 18, pp. 2938–2943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ward and C. Noonan, “Results of a residential indoor PM2.5 sampling program before and after a woodstove changeout,” Indoor Air, vol. 18, no. 5, pp. 408–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. W. Allen, S. Leckie, G. Millar, and M. Brauer, “The impact of wood stove technology upgrades on indoor residential air quality,” Atmospheric Environment, vol. 43, no. 37, pp. 5908–5915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Grell, S. E. Peckham, R. Schmitz et al., “Fully coupled "online" chemistry within the WRF model,” Atmospheric Environment, vol. 39, no. 37, pp. 6957–6975, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Peckham, J. D. Fast, R. Schmitz, et al., “WRF/Chem version 3.1 user’s guide,” pp. 78, 2009.
  11. G. J. Frost, S. A. McKeen, M. Trainer et al., “Effects of changing power plant NOx emissions on ozone in the eastern United States: Proof of concept,” Journal of Geophysical Research, D, vol. 111, no. 12, Article ID D12306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wang, Z. Wu, and G. Liang, “WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondary organic aerosol formation over Pearl River Delta,” Particuology, vol. 7, no. 5, pp. 384–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. T. Tran, G. Newby, and N. Mölders, “Impacts of emission changes on sulfate aerosols in Alaska,” Atmospheric Environment, vol. 45, no. 18, pp. 3078–3090, 2011. View at Publisher · View at Google Scholar
  14. N. Mölders, H. N. Q. Tran, P. Quinn, K. Sassen, G. Shaw, and G. Kramm, “Assessment of WRF/Chem to simulate sub-Arctic boundary layer characteristics during low solar irradiation using radiosonde, sodar, and surface data,” Atmospheric Pollution Research, vol. 2, no. 3, pp. 283–299, 2011.
  15. N. Mölders, H. N. Q. Tran, C. F. Cahill, K. Leelasakultum, and T. T. Tran, “Assessment of WRF/Chem PM2.5-forecasts using mobile and fixed location data from the Fairbanks, Alaska winter 2008/09 field campaign,” Atmospheric Pollution Research, vol. 3, no. 2, pp. 180–191, 2012. View at Publisher · View at Google Scholar
  16. S. Y. Hong and J. O. J. Lim, “The WRF single-moment 6-class microphysics scheme,” Journal of The Korean Meteorological Society, vol. 42, no. 1, pp. 129–151, 2006. View at Scopus
  17. G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Chou and M. J. Suarez, “An efficient thermal infrared radiation parameterization for use in general circulation models,” Tech. Rep., NASA Center for Aerospace Information, 1994.
  19. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D: Atmospheres, vol. 102, no. 14, pp. 16663–16682, 1997. View at Scopus
  20. J. C. Barnard, J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, “Technical note: evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the milagro campaign,” Atmospheric Chemistry and Physics, vol. 10, no. 15, pp. 7325–7340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. I. Janjic, “The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes,” Monthly Weather Review, vol. 122, no. 5, pp. 927–945, 1994. View at Scopus
  22. T. G. Smirnova, J. M. Brown, S. G. Benjamin, and D. Kim, “Parameterization of cold-season processes in the maps land-surface scheme,” Journal of Geophysical Research D: Atmospheres, vol. 105, no. 3, pp. 4077–4086, 2000. View at Scopus
  23. W. R. Stockwell, P. Middleton, J. S. Chang, and X. Tang, “The second generation regional acid deposition model chemical mechanism for regional air quality modeling,” Journal of Geophysical Research, vol. 95, no. 10, pp. 16343–16367, 1990. View at Scopus
  24. S. Madronich, “Photodissociation in the atmosphere. 1. Actinic flux and the effects of ground reflections and clouds,” Journal of Geophysical Research, vol. 92, no. 8, pp. 9740–9752, 1987. View at Publisher · View at Google Scholar
  25. I. J. Ackermann, H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, “Modal Aerosol Dynamics model for Europe: development and first applications,” Atmospheric Environment, vol. 32, no. 17, pp. 2981–2999, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Schell, I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, “Modeling the formation of secondary organic aerosol within a comprehensive air quality model system,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28275–28293, 2001. View at Scopus
  27. M. L. Wesely, “Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models,” Atmospheric Environment, vol. 23, no. 6, pp. 1293–1304, 1989. View at Scopus
  28. D. Simpson, A. Guenther, C. N. Hewitt, and R. Steinbrecher, “Biogenic emissions in Europe 1. estimates and uncertainties,” Journal of Geophysical Research, vol. 100, no. 11, pp. 22875–22890, 1995. View at Scopus
  29. J. Davies, D. Misiuk, R. Colgan, and N. Wiltse, “Reducing PM2.5 emissions from residential heating sources in the Fairbanks North Star Borough: emission estimates, policy options, and recommendations,” Tech. Rep., Fairbanks, Alaska, USA, 2009.
  30. United State Environmental Protection Agency (EPA), “AP 42, Fifth Edition, Vol. I - Chapter 1: External combustion sources,” 2011, http://www.epa.gov/ttn/chief/ap42/ch01/index.html.