About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 861026, 14 pages
http://dx.doi.org/10.1155/2012/861026
Research Article

Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean

1Research and Technology Development Centre, Sharda University, Knowledge Park III, Greater Noida, 201-306, India
2Center for Excellence in Earth Observing, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
3School of Earth and Environmental Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
4Laboratory of Meteorology, Department of Physics, Athens University, Athens, Greece
5National Balloon Facility, Tata Institute of Fundamental Research, Hyderabad 500 062, India
6Atmospheric Science Section, Oceanography Division, National Remote Sensing Centre, Department of Space-Government of India, Hyderabad 500 625, India
7Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
8Universities Space Research Association, Greenbelt, MD 20770, USA
9NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA
10Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria 21522, Egypt

Received 17 November 2011; Accepted 17 January 2012

Academic Editor: Achuthan Jayaraman

Copyright © 2012 D. G. Kaskaoutis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IPCC, “Summary for policymakers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, New York, NY, USA, 2007.
  2. Z. Levin, E. Ganor, and V. Gladstein, “The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean,” Journal of Applied Meteorology, vol. 35, no. 9, pp. 1511–1523, 1996. View at Scopus
  3. R. Gautam, N. C. Hsu, and K. M. Lau, “Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic plains: implications for regional climate warming,” Journal of Geophysical Research D, vol. 115, no. 17, D17208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. El-Askary and M. Kafatos, “Dust storm and black cloud influence on aerosol optical properties over Cairo and the Greater Delta region, Egypt,” International Journal of Remote Sensing, vol. 29, no. 24, pp. 7199–7211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. S. Marey, J. C. Gille, H. M. El-Askary, E. A. Shalaby, and M. E. El-Raey, “Study of the formation of the “black cloud” and its dynamics over Cairo, Egypt, using MODIS and MISR sensors,” Journal of Geophysical Research D, vol. 115, no. 21, article D21206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. S. Marey, J. C. Gille, H. M. El-Askary, E. A. Shalaby, and M. E. El-Raey, “Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data,” Atmospheric Chemistry and Physics, vol. 11, no. 20, pp. 10637–10648, 2011. View at Publisher · View at Google Scholar
  7. A. K. Prasad, K. H. S. Yang, H. M. El-Askary, and M. Kafatos, “Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008),” Annales Geophysicae, vol. 27, no. 12, pp. 4505–4519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Prasad, H. El-Askary, and M. Kafatos, “Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season,” Environmental Pollution, vol. 158, no. 11, pp. 3385–3391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Prasad, H. M. El-Askary, G. A. Asrar, M. Kafatos, and A. Jaswal, “Melting of major glaciers in Himalayas: role of desert dust and anthropogenic aerosols, Planet Earth 2011—Global Warming Challenges and Opportunities for Policy and Practice,” E. G. Carayannis, Editor, George Washington University, School of Business, InTech, 2011 http://www.intechopen.com/articles/show/title/melting-of-major-glaciers-in-himalayas-role-of-desert-dust-and-anthropogenic-aerosols.
  10. S. K. Das and A. Jayaraman, “Role of black carbon in aerosol properties and radiative forcing over western India during premonsoon period,” Atmospheric Research, vol. 102, no. 3, pp. 320–334, 2011. View at Publisher · View at Google Scholar
  11. I. Tegen, A. A. Lacis, and I. Fung, “The influence on climate forcing of mineral aerosols from disturbed soils,” Nature, vol. 380, no. 6573, pp. 419–422, 1996. View at Scopus
  12. A. K. Prasad, S. Singh, S. S. Chauhan, M. K. Srivastava, R. P. Singh, and R. Singh, “Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms,” Atmospheric Environment, vol. 41, no. 29, pp. 6289–6301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Claquin, M. Schulz, Y. Balkanski, and O. Boucher, “Uncertainties in assessing radiative forcing by mineral dust,” Tellus, Series B, vol. 50, no. 5, pp. 491–505, 1998. View at Scopus
  14. F. Patadia, E. S. Yang, and S. A. Christopher, “Does dust change the clear sky top of atmosphere shortwave flux over high surface reflectance regions?” Geophysical Research Letters, vol. 36, no. 15, article L15825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kinne and R. Pueschel, “Aerosol radiative forcing for Asian continental outflow,” Atmospheric Environment, vol. 35, no. 30, pp. 5019–5028, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product,” Reviews of Geophysics, vol. 40, no. 1, 2002. View at Scopus
  17. H. M. El-Askary, S. Sarkar, M. Kafatos, and T. A. El-Ghazawi, “A multisensor approach to dust storm monitoring over the nile delta,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 10, pp. 2386–2391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. N. J. Middleton and A. S. Goudie, “Saharan dust: sources and trajectories,” Transactions of the Institute of British Geographers, vol. 26, no. 2, pp. 165–181, 2001. View at Scopus
  19. S. Engelstaedter, I. Tegen, and R. Washington, “North African dust emissions and transport,” Earth-Science Reviews, vol. 79, no. 1-2, pp. 73–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Prasad and R. P. Singh, “Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data,” Journal of Geophysical Research D, vol. 112, no. 9, article D09208, 2007. View at Publisher · View at Google Scholar
  21. F. Barnaba and G. P. Gobbi, “Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001,” Atmospheric Chemistry and Physics, vol. 4, no. 9-10, pp. 2367–2391, 2004. View at Scopus
  22. D. Antoine and D. Nobileau, “Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations,” Journal of Geophysical Research D, vol. 111, no. 12, article D12214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. El-Askary, R. Farouk, C. Ichoku, and M. Kafatos, “Transport of dust and anthropogenic aerosols across Alexandria, Egypt,” Annales Geophysicae, vol. 27, no. 7, pp. 2869–2879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. G. Kaskaoutis, P. T. Nastos, P. G. Kosmopoulos, and H. D. Kambezidis, “The combined use of satellite data, air-mass trajectories and model applications for monitoring of the dust transport over Athens, Greece,” International Journal of Remote Sensing, vol. 31, pp. 5089–5109, 2010.
  25. D. G. Kaskaoutis, P. G. Kosmopoulos, P. T. Nastos, H. D. Kambezidis, M. Sharma, and W. Mehdi, “Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS,” Geomatics, Natural Hazards and Risk, vol. 3, no. 1, pp. 35–54, 2012.
  26. A. K. Prasad, R. P. Singh, and A. Singh, “Seasonal climatology of aerosol optical depth over the Indian subcontinent: trend and departures in recent years,” International Journal of Remote Sensing, vol. 27, no. 12, pp. 2323–2329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Prasad and R. P. Singh, “Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005),” Remote Sensing of Environment, vol. 107, no. 1-2, pp. 109–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Guerrero-Rascado, F. J. Olmo, I. Avilés-Rodríguez et al., “Extreme saharan dust event over the southern iberian peninsula in september 2007: active and passive remote sensing from surface and satellite,” Atmospheric Chemistry and Physics, vol. 9, no. 21, pp. 8453–8469, 2009. View at Scopus
  29. K. V. S. Badarinath, S. K. Kharol, D. G. Kaskaoutis, A. R. Sharma, V. Ramaswamy, and H. D. Kambezidis, “Long-range transport of dust aerosols over the Arabian Sea and Indian regionߞA case study using satellite data and ground-based measurements,” Global and Planetary Change, vol. 72, no. 3, pp. 164–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Levy, L. A. Remer, D. Tanré et al., “Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE,” Journal of Geophysical Research D, vol. 108, article 8594, no. 19, 13 pages, 2003.
  31. D. G. Kaskaoutis, H. D. Kambezidis, P. T. Nastos, and P. G. Kosmopoulos, “Study on an intense dust storm over Greece,” Atmospheric Environment, vol. 42, no. 29, pp. 6884–6896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Baddock, J. E. Bullard, and R. G. Bryant, “Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia,” Remote Sensing of Environment, vol. 113, no. 7, pp. 1511–1528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. C. Hsu, S. C. Tsay, M. D. King, and J. R. Herman, “Deep Blue retrievals of Asian aerosol properties during ACE-Asia,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, Article ID 1717707, pp. 3180–3195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Generoso, I. Bey, M. Labonne, and F.-M. Bréon, “Aerosol vertical distribution in dust outflow over the Atlantic: comparisons between GEOS-Chem and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” Journal of Geophysical Research D, vol. 113, no. 24, article D24209, 2008. View at Publisher · View at Google Scholar
  35. S. H. Wang, N. H. Lin, M. D. Chou et al., “Profiling transboundary aerosols over Taiwan and assessing their radiative effects,” Journal of Geophysical Research D, vol. 115, no. 23, article D00K31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. K. V. S. Badarinath, S. Kumar Kharol, D. G. Kaskaoutis, and H. D. Kambezidis, “Dust storm over Indian region and its impact on the ground reaching solar radiation—a case study using multi-satellite data and ground measurements,” Science of the Total Environment, vol. 384, pp. 316–332, 2007.
  37. R. C. Levy, L. A. Remer, and O. Dubovik, “Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land,” Journal of Geophysical Research D, vol. 112, no. 13, article D13210, 2007. View at Publisher · View at Google Scholar
  38. J. Huang, P. Minnis, Y. Yi et al., “Summer dust aerosols detected from CALIPSO over the Tibetan Plateau,” Geophysical Research Letters, vol. 34, no. 18, article L18805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Gautam, Z. Liu, R. P. Singh, and N. C. Hsu, “Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data,” Geophysical Research Letters, vol. 36, no. 6, article L06813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Chen, J. Huang, P. Minnis et al., “Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements,” Atmospheric Chemistry and Physics, vol. 10, no. 9, pp. 4241–4251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. R. Rogers, C. A. Hostetler, J. W. Hair et al., “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmospheric Chemistry and Physics Discussions, vol. 10, no. 11, pp. 28355–28398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. R. L. Curier, J. P. Veefkind, R. Braak, B. Veihelmann, O. Torres, and G. de Leeuw, “Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: application to western Europe,” Journal of Geophysical Research D, vol. 113, no. 17, article D17S90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. F. Levelt, G. H. J. Van Den Oord, M. R. Dobber et al., “The ozone monitoring instrument,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp. 1093–1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. N. C. Hsu, J. R. Herman, O. Torres et al., “Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: results and applications,” Journal of Geophysical Research D, vol. 104, no. 6, pp. 6269–6279, 1999. View at Scopus
  45. S. Nickovic, G. Kallos, A. Papadopoulos, and O. Kakaliagou, “A model for prediction of desert dust cycle in the atmosphere,” Journal of Geophysical Research D, vol. 106, no. 16, pp. 18113–18129, 2001. View at Scopus
  46. C. Pérez, S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro, “A long Saharan dust event over the western Mediterranean: lidar, Sun photometer observations, and regional dust modeling,” Journal of Geophysical Research D, vol. 111, no. 15, article D15214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Amiridis, M. Kafatos, C. Perez et al., “The potential of the synergistic use of passive and active remote sensing measurements for the validation of a regional dust model,” Annales Geophysicae, vol. 27, no. 8, pp. 3155–3164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Meloni, A. di Sarra, F. Monteleone, G. Pace, S. Piacentino, and D. M. Sferlazzo, “Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa,” Atmospheric Research, vol. 88, no. 2, pp. 134–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. N. G. Prezerakos, A. G. Paliatsos, and K. V. Koukouletsos, “Diagnosis of the relationship between dust storms over the Sahara desert and dust deposit or coloured rain in the South Balkans,” Advances in Meteorology, vol. 2010, Article ID 760546, 14 pages, 2010. View at Publisher · View at Google Scholar
  50. M. de Graaf, P. Stammes, O. Torres, and R. B. A. Koelemeijer, “Absorbing Aerosol Index: sensitivity analysis, application to GOME and comparison with TOMS,” Journal of Geophysical Research D, vol. 110, no. 1, article D01201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Torres, P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, “A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 398–413, 2002. View at Scopus
  52. D. G. Kaskaoutis, P. T. Nastos, P. G. Kosmopoulos, H. D. Kambezidis, S. K. Kharol, and K. V. S. Badarinath, “The Aura-OMI Aerosol Index distribution over Greece,” Atmospheric Research, vol. 98, no. 1, pp. 28–39, 2010. View at Publisher · View at Google Scholar
  53. P. Alpert, P. Kishcha, A. Shtivelman, S. O. Krichak, and J. H. Joseph, “Vertical distribution of Saharan dust based on 2.5-year model predictions,” Atmospheric Research, vol. 70, no. 2, pp. 109–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W. H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” Journal of Geophysical Research D, vol. 110, no. 18, article D18S14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Kahn, A. Petzold, M. Wendisch et al., “Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging,” Tellus, Series B, vol. 61, no. 1, pp. 239–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Liu, D. L. Westphal, S. Wang et al., “A high-resolution numerical study of the Asian dust storms of April 2001,” Journal of Geophysical Research D, vol. 108, no. 23, article 8653, 2003. View at Scopus
  57. I. Tegen, M. Werner, S. P. Harrison, and K. E. Kohfeld, “Relative Importance of climate and land use in determining present and future global soil dust emission,” Geophysical Research Letters, vol. 31, article L05105, 2004.
  58. Y. H. Lee, K. Chen, and P. J. Adams, “Development of a global model of mineral dust aerosol microphysics,” Atmospheric Chemistry and Physics, vol. 9, no. 7, pp. 2441–2458, 2009. View at Scopus
  59. H. Guan, B. Schmid, A. Bucholtz, and R. Bergstrom, “Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile,” Journal of Geophysical Research, vol. 115, D06209, 2010. View at Publisher · View at Google Scholar
  60. C. Lemaître, C. Flamant, J. Cuesta et al., “Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa,” Atmospheric Chemistry and Physics, vol. 10, no. 17, pp. 8131–8150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmospheric Environment, vol. 34, no. 29-30, pp. 5119–5127, 2000. View at Scopus
  62. G. Pavese, F. De Tomasi, M. Calvello, F. Esposito, and M. R. Perrone, “Detection of Sahara dust intrusions during mixed advection patterns over south-east Italy: a case study,” Atmospheric Research, vol. 92, no. 4, pp. 489–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Meloni, A. di Sarra, G. Biavati et al., “Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005,” Atmospheric Environment, vol. 41, no. 14, pp. 3041–3056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. S. Balis, V. Amiridis, S. Nickovic, A. Papayannis, and C. Zerefos, “Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece,” Geophysical Research Letters, vol. 31, no. 13, article L13104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Ansmann, J. Bösenberg, A. Chiakovsky et al., “Long-range transport of Saharan dust to northern Europe. The 11–16 October 2001 outbreak observed with EARLINET,” Journal of Geophysical Research D, vol. 108, no. 24, article 4783, 2003. View at Publisher · View at Google Scholar
  66. D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” Journal of Geophysical Research D, vol. 113, no. 16, article D16214, 2008. View at Publisher · View at Google Scholar
  67. A. M. Tafuro, F. Barnaba, F. De Tomasi, M. R. Perrone, and G. P. Gobbi, “Saharan dust particle properties over the central Mediterranean,” Atmospheric Research, vol. 81, no. 1, pp. 67–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. G. P. Gobbi, F. Barnaba, and L. Ammannato, “Estimating the impact of Saharan dust on the year 2001 PM10 record of Rome, Italy,” Atmospheric Environment, vol. 41, no. 2, pp. 261–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. Z. Liu, D. Liu, J. Huang et al., “Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations,” Atmospheric Chemistry and Physics, vol. 8, no. 16, pp. 5045–5060, 2008. View at Scopus
  70. A. Colette, L. Menut, M. Haeffelin, and Y. Morille, “Impact of the transport of aerosols from the free troposphere towards the boundary layer on the air quality in the Paris area,” Atmospheric Environment, vol. 42, no. 2, pp. 390–402, 2008. View at Publisher · View at Google Scholar · View at Scopus