About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 953853, 8 pages
http://dx.doi.org/10.1155/2012/953853
Research Article

Relationship of Sahel Precipitation and Atmospheric Centers of Action

1School for Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
2Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA

Received 4 May 2012; Accepted 6 September 2012

Academic Editor: Youmin Tang

Copyright © 2012 Sultan Hameed and Nicole Riemer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. K. Darkoh, “The nature, causes and consequences of desertification in the drylands of Africa,” Land Degradation and Development, vol. 9, no. 1, pp. 1–20, 1998. View at Scopus
  2. N. Riemer, O. M. Doherty, and S. Hameed, “On the variability of African dust transport across the Atlantic,” Geophysical Research Letters, vol. 33, Article ID L13814, 4 pages, 2006. View at Publisher · View at Google Scholar
  3. O. M. Doherty, N. Riemer, and S. Hameed, “Saharan mineral dust transport into the Caribbean: observed atmospheric controls and trends,” Journal of Geophysical Research D, vol. 113, no. 7, Article ID D07211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. K. Angell and J. Korshover, “Quasi-biennial and long-term fluctuations in the centers of action,” Monthly Weather Review, vol. 102, no. 10, pp. 669–678, 1974. View at Publisher · View at Google Scholar
  5. J. G. Charney, “Dynamics of deserts and drought in the Sahel,” Quarterly Journal of the Royal Meteorological Society, vol. 101, no. 428, pp. 193–202, 1975. View at Publisher · View at Google Scholar
  6. W. M. Cunnington and P. R. Rowntree, “Simulations of the Saharan atmosphere-dependence on moisture and albedo,” Quarterly Journal of the Royal Meteorological Society, vol. 112, no. 474, pp. 971–999, 1986. View at Publisher · View at Google Scholar
  7. Y. C. Sud and W. E. Smith, “The influence of surface roughness of deserts on the July circulation—a numerical study,” Boundary-Layer Meteorology, vol. 33, no. 1, pp. 15–49, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Lau, S. S. P. Shen, K.-M. Kim, and H. Wang, “A multimodel study of the twentieth-century simulations of Sahel drought from the 1970s to 1990s,” Journal of Geophysical Research D, vol. 111, no. 7, Article ID D07111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. H. Cook and E. K. Vizy, “Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations,” Journal of Climate, vol. 19, no. 15, pp. 3681–3703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. K. Tippett, “Filtering of GCM simulated Sahel precipitation,” Geophysical Research Letters, vol. 33, no. 1, Article ID L01804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Rossby, et al., “Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacement of the semi-permanent centers of actions,” Journal of Marine Research, vol. 2, no. 1, pp. 38–55, 1939.
  12. S. Hameed, M. J. Iqbal, S. Rehman, and D. Collins, “Impact of the Indian Ocean high pressure system on winter precipitation over western and Southwestern Australia,” Australian Meterological and Oceanic Journal, vol. 61, no. 3, pp. 159–170, 2011.
  13. S. Hameed, W. Shi, J. Boyle, and B. Santer, “Investigation of the centers of action in the North Atlantic and North Pacific in the ECHAM AMIP simulation,” in Proceedings of the 1st International AMIP Scientific Conference, p. 221, Monterey, Calif, USA, 1995, WCRP 92.
  14. K. E. Trenberth and D. A. Paolino, “The Northern Hemisphere sea-level pressure data set: trends, errors and discontinuities,” Monthly Weather Review, vol. 108, no. 7, pp. 855–872, 1980. View at Scopus
  15. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR reanalysis 40-year project,” Bulletin of the American Meteorological Society, vol. 77, pp. 427–471, 1996.
  16. M. Hulme, “Validation of large-scale precipitation fields in general circulation models,” in Global Precipitations and Climate Change, M. Desbois and F. Desalmand, Eds., NATO ASI Series, pp. 387–406, Springer, Berlin, Germany, 1994.
  17. M. Hulme, T. J. Osborn, and T. C. Johns, “Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations,” Geophysical Research Letters, vol. 25, no. 17, pp. 3379–3382, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. E. Nicholson, “The nature of rainfall fluctuations in subtropical West Africa (Guinea Sahel Soudan),” Monthly Weather Review, vol. 108, no. 4, pp. 473–487, 1980. View at Scopus
  19. C. K. Folland, J. Owen, M. N. Ward, and A. Colman, “Prediction of seasonal rainfall in the Sahel region using empirical and dynamical methods,” Journal of Forecasting, vol. 10, no. 1-2, pp. 21–56, 1991. View at Publisher · View at Google Scholar
  20. D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, New York, NY, USA, 2011.
  21. B. Wang, The Asian Monsoon, Springer Praxis Books, 2006.
  22. M. N. Ward, “Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales,” Journal of Climate, vol. 11, no. 12, pp. 3167–3191, 1998. View at Scopus
  23. M. J. Rodwell and B. J. Hoskins, “Monsoons and the dynamics of deserts,” Quarterly Journal of the Royal Meteorological Society, vol. 122, no. 534, pp. 1385–1404, 1996. View at Scopus