About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2013 (2013), Article ID 281695, 18 pages
http://dx.doi.org/10.1155/2013/281695
Research Article

Analysis and Forecast of a Tornadic Thunderstorm Using Multiple Doppler Radar Data, 3DVAR, and ARPS Model

1Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 73072, USA
2School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
3NOAA/National Severe Storms Laboratory, Norman, OK 73072, USA

Received 30 May 2013; Accepted 25 September 2013

Academic Editor: Kun Zhao

Copyright © 2013 Edward Natenberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Brandes, “Flow in severe thunderstorms observed by dual-Doppler radar,” Monthly Weather Review, vol. 105, pp. 113–120, 1977.
  2. E. A. Brandes, “Mesocyclone evolution and tornadogenesis: some observations,” Monthly Weather Review, vol. 106, pp. 995–1011, 1978.
  3. D. W. Burgess, L. R. Lemon, and R. A. Brown, “Tornado characteristics revealed by Doppler radar,” Geophysical Research Letters, vol. 2, pp. 183–184, 1975.
  4. L. R. Lemon and C. A. Doswell III, “Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis,” Monthly Weather Review, vol. 107, no. 9, pp. 1184–1197, 1979. View at Scopus
  5. J. S. Juanzhen Sun, D. W. Flicker, and D. K. Lilly, “Recovery of three-dimensional wind and temperature fields from simulated single-Doppler radar data,” Journal of the Atmospheric Sciences, vol. 48, no. 6, pp. 876–890, 1991. View at Scopus
  6. T. Gal-Chen, “A method for the initialization of the anelastic equations: implications for matching models with observations,” Monthly Weather Review, vol. 106, pp. 587–606, 1978.
  7. C. E. Hane, R. B. Wilhelmson, and T. Gal-Chen, “Retrieval of thermodynamic variables within deep convective clouds: experiments in three dimensions,” Monthly Weather Review, vol. 109, no. 3, pp. 564–576, 1981. View at Scopus
  8. T. Gal-Chen and R. A. Kropfli, “Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: applications for matching models with observations,” Journal of the Atmospheric Sciences, vol. 41, no. 20, pp. 3007–3020, 1984. View at Scopus
  9. A. Crook, “Numerical simulations initialized with radar-derived winds. Part I: simulated data experiments,” Monthly Weather Review, vol. 122, no. 6, pp. 1189–1203, 1994. View at Scopus
  10. A. Crook and J. D. Tuttle, “Numerical simulations initialized with radar-derived winds. Part II: forecasts of three gust-front cases,” Monthly Weather Review, vol. 122, no. 6, pp. 1204–1217, 1994. View at Scopus
  11. S. S. Weygandt, A. Shapiro, and K. K. Droegemeier, “Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: single-Doppler velocity retrieval,” Monthly Weather Review, vol. 130, no. 3, pp. 433–453, 2002. View at Scopus
  12. S. S. Weygandt, A. Shapiro, and K. K. Droegemeier, “Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: thermodynamic retrieval and numerical prediction,” Monthly Weather Review, vol. 130, no. 3, pp. 454–476, 2002. View at Scopus
  13. R. Rotunno and J. B. Klemp, “The influence of shear-induced pressure gradient on thunderstorm motion,” Monthly Weather Review, vol. 110, no. 2, pp. 136–151, 1982. View at Scopus
  14. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: model development and simulated data experiments,” Journal of the Atmospheric Sciences, vol. 54, no. 12, pp. 1642–1661, 1997. View at Scopus
  15. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: retrieval experiments of an observed Florida convective storm,” Journal of the Atmospheric Sciences, vol. 55, no. 5, pp. 835–852, 1998. View at Scopus
  16. J. Sun and N. A. Crook, “Real-time low-level wind and temperature analysis using single WSR-88D data,” Weather and Forecasting, vol. 16, no. 1, pp. 117–132, 2001. View at Scopus
  17. J. Gao, M. Xue, A. Shapiro, and K. K. Droegemeier, “A variational method for the analysis of three-dimensional wind fields from two Doppler radars,” Monthly Weather Review, vol. 127, no. 9, pp. 2128–2142, 1999. View at Scopus
  18. J. Gao, M. Xue, K. Brewster, and K. K. Droegemeier, “A three-dimensional variational data analysis method with recursive filter for Doppler radars,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 3, pp. 457–469, 2004. View at Scopus
  19. R. J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts, “Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: spatially homogeneous and isotropic Gaussian covariances,” Monthly Weather Review, vol. 131, pp. 1524–1535, 2003.
  20. M. Hu, M. Xue, and K. Brewster, “3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: cloud analysis and its impact,” Monthly Weather Review, vol. 134, no. 2, pp. 675–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Hu, M. Xue, J. Gao, and K. Brewster, “3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: impact of radial velocity analysis via 3DVAR,” Monthly Weather Review, vol. 134, no. 2, pp. 699–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,” Journal of Geophysical Research, vol. 99, no. 5, pp. 10143–10162, 1994. View at Scopus
  23. C. Snyder and F. Zhang, “Assimilation of simulated Doppler radar observations with an ensemble Kalman filter,” Monthly Weather Review, vol. 131, no. 8, pp. 1663–1677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Zhang, C. Snyder, and J. Sun, “Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter,” Monthly Weather Review, vol. 132, pp. 1238–1253, 2004.
  25. M. Tong and M. Xue, “Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments,” Monthly Weather Review, vol. 133, no. 7, pp. 1789–1807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Xue, M. Tong, and K. K. Droegemeier, “An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting,” Journal of Atmospheric and Oceanic Technology, vol. 23, no. 1, pp. 46–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Dowell, L. J. Wicker, and D. J. Stensrud, “High-resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and forecast experiments,” in Proceedings of the 22nd Conference on Severe Local Storms, The American Meteorological Society, Hyannis, Mass, USA, 2004, Extended Abstract 12.5.
  28. N. Snook, M. Xue, and Y. Jung, “Analysis of a tornadic mesoscale convective vortex based on ensemble kalman filter assimilation of CASA X-band and WSR-88D radar data,” Monthly Weather Review, vol. 139, no. 11, pp. 3446–3468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Snook, M. Xue, and Y. Jung, “Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data,” Monthly Weather Review, vol. 140, pp. 2126–2146, 2012.
  30. R. A. McPherson, C. A. Fiebrich, K. C. Crawford et al., “Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 3, pp. 301–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. J. Wicker and D. Dowell, “High-resolution analyses of the 8 May 2003 Oklahoma City storm. Part III: an ultra-high resolution forecast experiment,” in Proceedings of the 22nd Conference on Severe Local Storms, The American Meteorological Society, Hyannis, Mass, USA, 2004, Extended Abstract 12.6.
  32. D. W. Burgess, “High-resolution analyses of the 8 May 2003 Oklahoma City storm. Part I: storm structure and evolution from radar data,” in Proceedings of the 22nd Conference on Severe Local Storms, The American Meteorological Society, Hyannis, Mass, USA, 2004, Extended Abstract 12.4.
  33. A. Witt, R. A. Brown, and V. Lakshmanan, “Real-time calculation of horizontal winds using multiple Doppler radars: a new WDSS-II module,” in Proceedings of the 11th Conference on Mesoscale Processes and the 32nd Conference on Radar Meteorology, pp. 1171–1181, Albuquerque, NM, USA, October 2005. View at Scopus
  34. M. Hu and M. Xue, “Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case,” Monthly Weather Review, vol. 135, no. 2, pp. 507–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Hu and M. Xue, “Analysis and prediction of the 8 May 2003 Oklahoma City tornadic thunderstorm and embedded tornado using ARPS with assimilation of WSR-88D radar data,” in Proceedings of the 18th Conference on Numerical Weather Prediction, The American Meteorological Society, Park City, Utah, USA, 2007, Extended Abstract 1B.4.
  36. M. Xue, M. Hu, and A. Schenkman, “Numerical prediction of 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with assimilation of WSR-88D radar data,” Weather and Forecasting. In press.
  37. M. Xue, K. K. Droegemeier, and V. Wong, “The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification,” Meteorology and Atmospheric Physics, vol. 75, no. 3-4, pp. 161–193, 2000. View at Scopus
  38. M. Xue, K. K. Droegemeier, V. Wong et al., “The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications,” Meteorology and Atmospheric Physics, vol. 76, no. 3-4, pp. 134–165, 2001. View at Scopus
  39. M. Xue, D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, “The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 139–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Xue, O. K. Norman, F. Kong, et al., “CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA Hazardous Weather Testbed 2010 Spring Experiment,” in Proceedings of the 24th Conference on Weather and Forecasting and 20th Conference on Numerical Weather Prediction, The American Meteorological Society, 2011, Paper 9A.2.
  41. A. J. Clark, S. J. Weiss, J. S. Kain, et al., “An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment,” Bulletin of the American Meteorological Society, vol. 93, pp. 55–74, 2012.
  42. P. Courtier, J.-N. Thépaut, and A. Hollingsworth, “A strategy for operational implementation of 4D-Var, using an incremental approach,” Quarterly Journal, vol. 120, no. 519, pp. 1367–1387, 1994. View at Scopus
  43. S. C. Albers, J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, “The local analysis and prediction system (LAPS): analyses of clouds, precipitation, and temperature,” Weather and Forecasting, vol. 11, no. 3, pp. 273–287, 1996. View at Scopus
  44. J. Zhang, F. H. Carr, and K. Brewster, “ADAS cloud analysis,” in Proceedings of the 12th Conference on Numerical Weather Prediction, pp. 185–188, The American Meteorological Society, Phoenix, Ariz, USA, 1998.
  45. K. Brewster, “Recent advances in the diabatic initialization of a non-hydrostatic numerical model,” in Proceedings of the 15th Conference on Numerical Weather Prediction and 21st Conference on Severe Local Storms and 19th Conference on Weather Analysis and Forecasting, The American Meteorological Society, San Antonio, Tex, USA, 2002.
  46. Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” Journal of Climate & Applied Meteorology, vol. 22, no. 6, pp. 1065–1092, 1983. View at Scopus
  47. N. Snook and M. Xue, “Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms,” Geophysical Research Letters, vol. 35, no. 24, Article ID L24803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. L. R. Lemon, D. W. Burgess, and R. A. Brown, “Tornado production and storm sustenance,” in Proceedings of the 9th Conference on Severe Local Storms, pp. 100–104, The American Meteorological Society, Boston, Mass, USA, 1975.
  49. J. B. Klemp and R. B. Wilhelmson, “Simulations of right- and left-moving storms produced through storm splitting,” Journal of the Atmospheric Sciences, vol. 35, pp. 1097–1110, 1978.
  50. R. Rotunno, “On the evolution of thunderstorm rotation,” Monthly Weather Review, vol. 109, no. 3, pp. 577–586, 1981. View at Scopus
  51. J. T. Schaefer, “The critical success index as an indicator of warning skill,” Weather and Forecasting, vol. 5, pp. 570–575, 1990.