About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2013 (2013), Article ID 545463, 15 pages
http://dx.doi.org/10.1155/2013/545463
Research Article

Interannual Variability of Northern Hemisphere Storm Tracks in Coarse-Gridded Datasets

1Department of Earth and Atmospheric Sciences, Saint Louis University, 3642 Lindell Boulevard, O’Neil Hall 205, St. Louis, MO 63108, USA
2NOAA’s National Weather Service, National Centers for Environmental Prediction, Climate Prediction Center, 5830 University Research Court, College Park, MD 20740, USA

Received 20 August 2013; Revised 22 October 2013; Accepted 12 November 2013

Academic Editor: Igor I. Mokhov

Copyright © 2013 Timothy Paul Eichler and Jon Gottschalck. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Blackmon, “A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere,” Journal of the Atmospheric Sciences, vol. 33, no. 8, pp. 1607–1623, 1976. View at Scopus
  2. M. L. Blackmon, J. M. Wallace, N. C. Lau, and S. L. Mullen, “An observational study of the Northern Hemisphere wintertime circulation,” Journal of the Atmospheric Sciences, vol. 34, no. 7, pp. 1040–1053, 1977. View at Publisher · View at Google Scholar
  3. J. M. Wallace, G.-H. L. Gyu-Ho Lim, and M. L. Blackmon, “Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides,” Journal of the Atmospheric Sciences, vol. 45, no. 3, pp. 439–462, 1988. View at Scopus
  4. B. J. Hoskins and P. J. Valdes, “On the existence of storm-tracks,” Journal of the Atmospheric Sciences, vol. 47, no. 15, pp. 1854–1864, 1990. View at Scopus
  5. E. K. M. Chang and Y. Fu, “Using mean flow change as a proxy to infer interdecadal storm track variability,” Journal of Climate, vol. 16, no. 13, pp. 2178–2196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. E. K. M. Chang, “Are the Northern Hemisphere winter storm tracks significantly correlated?” Journal of Climate, vol. 17, no. 21, pp. 4230–4244, 2004. View at Scopus
  7. V. B. Rao, A. M. C. do Carmo, and S. H. Franchito, “Seasonal variations in the Southern Hemisphere storm tracks and associated wave propagation,” Journal of the Atmospheric Sciences, vol. 59, no. 6, pp. 1029–1040, 2002. View at Scopus
  8. C. S. Frederiksen and J. S. Frederiksen, “A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies,” Journal of the Atmospheric Sciences, vol. 53, no. 10, pp. 1410–1432, 1996. View at Scopus
  9. H. Nakamura and A. Shimpo, “Seasonal variations in the Southern Hemisphere cyclone tracks and jet stream as revealed in a reanalysis dataset,” Journal of Climate, vol. 17,, pp. 1828–1844, 2004.
  10. S. Petterson, “Some aspects of the general circulation of the atmosphere,” in Centenary Proceedings of the Royal Meteorological Society, pp. 120–155, Royal Meteorological Society, London, UK, 1950.
  11. W. H. Klein, “Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere,” Research Paper #40, U.S. Weather Bureau, Washington, DC, USA, 1957.
  12. J. Mather, H. Adams III, and G. Yoshioka, “Coastal storms of the Eastern United States,” Journal of Applied Meteorology, vol. 3, pp. 693–706, 1964.
  13. C. Reitan, “Frequencies of cyclones and cyclogenesis for North America, 1951–1970,” Monthly Weather Review, vol. 102, pp. 861–868, 1974.
  14. K. M. Zishka and P. J. Smith, “The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July 1950–1977,” Monthly Weather Review, vol. 108, no. 4, pp. 387–401, 1980. View at Scopus
  15. F. Sanders and J. R. Gyakum, “Synoptic-dynamic climatology of the “Bomb” (extratropical surface cyclone),” Monthly Weather Review, vol. 108, no. 10, pp. 1589–1606, 1980. View at Scopus
  16. L. M. Whittaker and L. H. Horn, “Geographical and seasonal distribution of North American cyclogenesis, 1958–1977,” Monthly Weather Review, vol. 109, no. 11, pp. 2312–2322, 1981. View at Scopus
  17. S. J. Lambert, “A cyclone climatology of the Canadian climate centre general circulation model,” Journal of Climate, vol. 1, pp. 109–115, 1988.
  18. R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 155–166, 1991. View at Scopus
  19. S.-J. Chen, Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, “Synoptic climatology of cyclogenesis over east Asia, 1958–1987,” Monthly Weather Review, vol. 119, no. 6, pp. 1407–1418, 1991. View at Scopus
  20. M. E. Hirsch, A. T. DeGaetano, and S. J. Colucci, “An East Coast winter storm climatology,” Journal of Climate, vol. 14, no. 5, pp. 882–899, 2001. View at Scopus
  21. T. Eichler and W. Higgins, “Climatology and ENSO-related variability of North American extratropical cyclone activity,” Journal of Climate, vol. 19, no. 10, pp. 2076–2093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Changnon, C. Merinsky, and M. Lawson, “Climatology of surface cyclone tracks associated with large central and Eastern U.S. Snowstorms, 1950–2000,” Monthly Weather Review, vol. 136, no. 8, pp. 3193–3202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Tilinina, S. K. Gulev, I. Rudeva, and P. Koltermann, “Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses,” Journal of Climate, vol. 26, pp. 6419–6438, 2013.
  24. K. I. Hodges, “A general method for tracking analysis and its application to meteorological data,” Monthly Weather Review, vol. 122, no. 11, pp. 2573–2586, 1994. View at Scopus
  25. K. I. Hodges, “Feature tracking on the unit sphere,” Monthly Weather Review, vol. 123, no. 12, pp. 3458–3465, 1995. View at Publisher · View at Google Scholar
  26. K. I. Hodges, “Spherical nonparametric estimators applied to the UGAMP model integration for AMIP,” Monthly Weather Review, vol. 124, no. 12, pp. 2914–2932, 1996. View at Scopus
  27. K. I. Hodges, “Adaptive constraints for feature tracking,” Monthly Weather Review, vol. 127, no. 6, pp. 1362–1373, 1999. View at Scopus
  28. B. J. Hoskins, J. Boyle, and C. Thorncroft, “A comparison of recent reanalysis datasets using objective feature tracking: cyclone tracks and tropical easterly waves,” Monthly Weather Review, vol. 131, pp. 2012–2037, 2003.
  29. M. D. S. Mesquita, D. E. Atkinson, and K. I. Hodges, “Characteristics and variability of storm tracks in the North Pacific, Bering Sea, and Alaska,” Journal of Climate, vol. 23, no. 2, pp. 294–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. I. Hodges, R. W. Lee, and L. Bengtsson, “A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25,” Journal of Climate, vol. 24, no. 18, pp. 4888–4906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. G. Akperov and I. I. Mokhov, “A comparative analysis of the method of extratropical cyclone identification,” Izvestiya, Atmospheric and Ocean Physics, vol. 46, no. 5, pp. 574–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Serreze, “Climatological aspects of cyclone development and decay in the arctic,” Atmosphere-Ocean, vol. 33, no. 1, pp. 1–23, 1995. View at Scopus
  33. U. Neu, M. G. Akperov, N. Bellenbaum, et al., “IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties,” Bulletin of the American Meteorological Society, vol. 94, pp. 529–547, 2013. View at Publisher · View at Google Scholar
  34. M. D. S. Mesquita, N. Gunnar Kvamstø, A. Sorteberg, and D. E. Atkinson, “Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere,” Tellus, Series A, vol. 60, no. 3, pp. 557–569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. R. Leonard, J. Turner, and A. Van Der Wal, “An assessment of three automatic depression tracking schemes,” Meteorological Applications, vol. 6, no. 2, pp. 173–183, 1999. View at Scopus
  36. J. M. Wallace and D. S. Gutzler, “Teleconnections in the geopotential height field during the Northern Hemisphere winter,” Monthly Weather Review, vol. 109, no. 4, pp. 784–812, 1981. View at Scopus
  37. J. D. Horel and J. M. Wallace, “Planetary-scale atmospheric phenomena associated with the Southern Oscillation,” Monthly Weather Review, vol. 109, no. 4, pp. 813–829, 1981. View at Scopus
  38. J. Noel and D. Changnon, “A pilot study examining U.S. winter cyclone frequency patterns associated with three ENSO parameters,” Journal of Climate, vol. 11, no. 8, pp. 2152–2159, 1998. View at Scopus
  39. S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cycone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data,” Climate Dynamics, vol. 17, no. 10, pp. 795–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. W. Hurrell, “Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature,” Geophysical Research Letters, vol. 23, no. 6, pp. 665–668, 1996. View at Scopus
  41. J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, “An overview of the North Atlantic oscillation,” in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, vol. 134 of Geophysical Monograph, pp. 1–35, American Geophysical Union, 2003. View at Publisher · View at Google Scholar
  42. J. A. Bradbury, B. D. Keim, and C. P. Wake, “The influence of regional storm tracking and teleconnections on winter precipitation in the northeastern United States,” Annals of the Association of American Geographers, vol. 93, no. 3, pp. 544–556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian ocean,” Nature, vol. 401, no. 6751, pp. 360–363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Ashok, Z. Guan, and T. Yamagata, “Influence of the Indian Ocean Dipole on the Australian winter rainfall,” Geophysical Research Letters, vol. 30, no. 15, pp. 1–6, 2003. View at Scopus
  45. L. Na, H. Honxia, M. Jinzhong, H. Feng, and B. Hongcum, “Spatial teleconnection field,” Progress in Natural Science, vol. 15, pp. 1143–1147, 2005.
  46. K. Ashok, H. Nakamura, and T. Yamagata, “Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter,” Journal of Climate, vol. 20, no. 13, pp. 3147–3163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Liu, H.-X. Chen, and L.-G. Lü, “Teleconnection of IOD signal in the upper troposphere over southern high latitudes,” Journal of Oceanography, vol. 63, no. 1, pp. 155–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. N. H. Saji and T. Yamagata, “Possible impacts of Indian Ocean Dipole mode events on global climate,” Climate Research, vol. 25, no. 2, pp. 151–169, 2003. View at Scopus
  49. T. Yamagata, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, “The coupled ocean-atmosphere variability in the tropical Indian Ocean,” in Earth's Climate: The Ocean-Atmosphere Interaction, vol. 147 of Geophysical Monograph, pp. 189–211, American Geophysical Union, 2004.
  50. J. Yang, Q. Liu, Z. Liu, L. Wu, and F. Huang, “Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection,” Geophysical Research Letters, vol. 36, no. 19, Article ID L19705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Annamalai, H. Okajima, and M. Watanabe, “Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño,” Journal of Climate, vol. 20, no. 13, pp. 3164–3189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Min, Q. Zhou, N. Liu, Q. Gao, and Z. Guan, “Teleconnection mode between IOD and Northern Hemisphere tropospheric circulation and its mechanism,” Meteorology and Atmospheric Physics, vol. 100, no. 1-4, pp. 207–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Dee, P. Berrisford, M. G. Bosilovich, et al., “The use of reanalysis data for monitoring the state of the climate [in “State of the Climate in 2010”],” Bulletin of the American Meteorological Society, vol. 92, no. 6, pp. S34–S35, 2011.
  54. M. C. Serreze, F. Carse, R. G. Barry, and J. C. Rogers, “Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation,” Journal of Climate, vol. 10, no. 3, pp. 453–464, 1997. View at Scopus
  55. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996. View at Scopus
  56. S. M. Uppala, P. W. Kållberg, A. J. Simmons, et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 612, pp. 2961–3012, 2005. View at Publisher · View at Google Scholar
  57. J. G. Pinto, M. Reyers, and U. Ulbrich, “The variable link between PNA and NAO in observations and in multi-century CGCM simulations,” Climate Dynamics, vol. 36, no. 1, pp. 337–354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. V. E. Kousky and R. W. Higgins, “An alert classification system for monitoring and assessing the ENSO cycle,” Weather and Forecasting, vol. 22, no. 2, pp. 353–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. P. D. Jones, T. Jonsson, and D. Wheeler, “Extension to the North Atlantic Oscillation using early instrumental pressure observations from gibraltar and south-west Iceland,” International Journal of Climatology, vol. 17, no. 13, pp. 1433–1450, 1997. View at Scopus
  60. X. Bai, J. Wang, C. Sellinger, A. Clites, and R. Assel, “Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO,” Journal of Geophysical Research: Oceans, vol. 117, no. 3, Article ID C03002, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. J. C. Rogers, “The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere,” Monthly Weather Review, vol. 112, no. 10, pp. 1999–2015, 1984. View at Scopus
  62. D. Luo, Y. Diao, and S. B. Feldstein, “The variability of the Atlantic storm track and the North Atlantic Oscillation: a link between intraseasonal and interannual variability,” Journal of the Atmospheric Sciences, vol. 68, no. 3, pp. 577–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Walter and H. F. Graf, “The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength,” Atmospheric Chemistry and Physics, vol. 5, no. 1, pp. 239–248, 2005. View at Scopus
  64. R. Seager, Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, “Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10,” Geophysical Research Letters, vol. 37, no. 14, Article ID L14703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Small, S. Islam, and M. Barlow, “The impact of a hemispheric circulation regime on fall precipitation over North America,” Journal of Hydrometeorology, vol. 11, no. 5, pp. 1182–1189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. J. Greatbatch, J. Lu, and K. A. Peterson, “Nonstationary impact of ENSO on Euro-Atlantic winter climate,” Geophysical Research Letters, vol. 31, no. 2, pp. L02208–4, 2004. View at Scopus