About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2013 (2013), Article ID 891260, 16 pages
http://dx.doi.org/10.1155/2013/891260
Research Article

A Comparison of Southern Hemisphere Cyclone Track Climatology and Interannual Variability in Coarse-Gridded Reanalysis Datasets

1Department of Earth and Atmospheric Sciences, Saint Louis University, 3642 Lindell Boulevard, O’Neil Hall 205, St. Louis, MO 63108, USA
2NOAA/ National Weather Service, National Centers for Environmental Prediction, Climate Prediction Center, 5830 University Research Court, College Park, MD 20740, USA

Received 20 August 2013; Accepted 5 November 2013

Academic Editor: Igor I. Mokhov

Copyright © 2013 Timothy Paul Eichler and Jon Gottschalck. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Midgley, R. Chapman, P. Mukheibir et al., “Impacts, vulnerability and adaptation in key South African Sectors,” LTMS Input Report 5, Energy Research Centre, University of Cape Town, 2007.
  2. K. E. Trenberth, “Storm tracks in the Southern Hemisphere,” Journal of the Atmospheric Sciences, vol. 48, no. 19, pp. 2159–2178, 1991. View at Scopus
  3. J. S. Frederiksen and C. S. Frederiksen, “Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model,” Journal of the Atmospheric Sciences, vol. 50, no. 18, pp. 3148–3163, 1993. View at Scopus
  4. J. W. Kidson and M. R. Sinclair, “The influences of persistent anomalies on Southern Hemisphere storm tracks,” Journal of Climate, vol. 8, no. 8, pp. 1938–1950, 1995. View at Scopus
  5. C. S. Frederiksen and J. S. Frederiksen, “A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies,” Journal of the Atmospheric Sciences, vol. 53, no. 10, pp. 1410–1432, 1996. View at Scopus
  6. E. H. Berbery and C. S. Vera, “Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data,” Journal of the Atmospheric Sciences, vol. 53, no. 3, pp. 468–481, 1996. View at Scopus
  7. V. B. Rao, A. M. C. do Carmo, and S. H. Franchito, “Seasonal variations in the Southern Hemisphere storm tracks and associated wave propagation,” Journal of the Atmospheric Sciences, vol. 59, no. 6, pp. 1029–1040, 2002. View at Scopus
  8. M. Inatsu and B. J. Hoskins, “The zonal asymmetry of the Southern Hemisphere winter storm track,” Journal of Climate, vol. 17, no. 24, pp. 4882–4892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Nakamura and A. Shimpo, “Seasonal variations in the Southern Hemisphere cyclone tracks and jet stream as revealed in a reanalysis dataset,” Journal of Climate, vol. 17, no. 1, pp. 1828–1844, 2004.
  10. S. A. Solman and C. G. Menéndez, “ENSO-related variability of the Southern Hemisphere winter storm track over the Eastern Pacific-Atlantic sector,” Journal of the Atmospheric Sciences, vol. 59, no. 13, pp. 2128–2140, 2002. View at Scopus
  11. K. Ashok, H. Nakamura, and T. Yamagata, “Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter,” Journal of Climate, vol. 20, no. 13, pp. 3147–3163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. C. Carmo and E. B. de Souza, “The role of the sea surface temperature anomalies on the Storm Track behaviour during Southern Hemisphere summer,” Journal of Coastal Research, no. 56, pp. 909–912, 2009, (Proceedings of the 10th International Coastal Symposium), Lisbon, Portugal.
  13. E. Lim and I. Simmonds, “Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001,” Journal of Climate, vol. 20, no. 11, pp. 2675–2690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. B. Pezza, I. Simmonds, and J. A. Renwick, “Southern hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean,” International Journal of Climatology, vol. 27, no. 11, pp. 1403–1419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Pezza, T. Durrant, I. Simmonds, and I. Smith, “Southern hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and Southern Australia rainfall,” Journal of Climate, vol. 21, no. 21, pp. 5566–5584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Mendes, E. P. Souza, J. A. Marengo, and M. C. D. Mendes, “Climatology of extratropical cyclones over the South American-southern oceans sector,” Theoretical and Applied Climatology, vol. 100, no. 3-4, pp. 239–250, 2010. View at Publisher · View at Google Scholar
  17. X. Yuan, J. Patoux, and C. Li, “Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes,” Journal of Geophysical Research D, vol. 114, no. 4, Article ID D04106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. J. Hoskins and K. I. Hodges, “A new perspective on Southern Hemisphere storm tracks,” Journal of Climate, vol. 18, no. 20, pp. 4108–4129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Neu, M. G. Akperov, N. Bellenbaum, et al., “IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties,” Bulletin of the American Meteorological Society, vol. 94, pp. 529–547, 2013.
  20. M. G. Bosilovich, J. Kennedy, D. Dee, and A. O'Neill, On the Reprocessing and Reanalysis of Observations for Climate, WCRP Position Paper, Version 1. 1, WCRP, 2011.
  21. L. Bengtsson, S. Hagemann, and K. I. Hodges, “Can climate trends be calculated from reanalysis data?” Journal of Geophysical Research D, vol. 109, no. 11, Article ID D11111, 8 pages, 2004. View at Scopus
  22. E. Andersson, P. Bauer, A. Beljaars et al., “Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system,” Bulletin of the American Meteorological Society, vol. 86, pp. 387–402, 2005.
  23. J. Chen, A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, “The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: long-term trend,” Journal of Climate, vol. 21, no. 11, pp. 2611–2633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. B. Rood and M. G. Bosilovich, “Reanalysis: data assimilation for scientific investigation of climate,” in Data Assimilation: Making Sense of Observations, W. A. Lahoz, B. Khattatov, and R. Menard, Eds., Springer, 2010.
  25. K. I. Hodges, B. J. Hoskins, J. Boyle, and C. Thorncroft, “A comparison of recent reanalysis datasets using objective feature tracking: cyclone tracks and tropical easterly waves,” Monthly Weather Review, vol. 131, pp. 2012–2037, 2003.
  26. K. I. Hodges, R. W. Lee, and L. Bengtsson, “A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25,” Journal of Climate, vol. 24, no. 18, pp. 4888–4906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Nakamura and T. Sampe, “Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter,” Geophysical Research Letters, vol. 29, no. 16, p. 1761, 2002. View at Scopus
  28. H. Nakamura, T. Izumi, and T. Sampe, “Interannual and decadal modulations recently observed in the Pacific storm track activity and èast Asian winter monsoon,” Journal of Climate, vol. 15, no. 14, pp. 1855–1874, 2002. View at Scopus
  29. K. E. Trenberth, G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, “Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures,” Journal of Geophysical Research C, vol. 103, no. 7, pp. 14291–14324, 1998. View at Scopus
  30. B. Bhaskaran and A. B. Mullan, “El Niño-related variations in the southern Pacific atmospheric circulation: model versus observations,” Climate Dynamics, vol. 20, no. 2-3, pp. 229–239, 2003. View at Scopus
  31. W. Cai, P. van Rensch, T. Cowan, and H. H. Hendon, “Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall,” Journal of Climate, vol. 24, no. 15, pp. 3910–3923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. C. Mo and R. W. Higgins, “The Pacific South American modes and the tropical intraseasonal oscillation,” Monthly Weather Review, vol. 126, pp. 1581–1596, 1998.
  33. R. D. Garreaud and D. S. Battisti, “Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation,” Journal of Climate, vol. 12, no. 7, pp. 2113–2123, 1999. View at Scopus
  34. E. DeWeaver and S. Nigam, “On the forcing of ENSO teleconnections by anomalous heating and cooling,” Journal of Climate, vol. 17, pp. 3225–3235, 2004.
  35. N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian ocean,” Nature, vol. 401, no. 6751, pp. 360–363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. N. H. Saji and T. Yamagata, “Possible impacts of Indian Ocean Dipole mode events on global climate,” Climate Research, vol. 25, no. 2, pp. 151–169, 2003. View at Scopus
  37. K. Ashok, Z. Guan, and T. Yamagata, “Influence of the Indian Ocean Dipole on the Australian winter rainfall,” Geophysical Research Letters, vol. 30, no. 15, p. 182, 2003. View at Scopus
  38. C. J. C. Reason and M. Rouault, “Links between the Antarctic Oscillation and winter rainfall over western South Africa,” Geophysical Research Letters, vol. 32, no. 7, Article ID L07705, 2005. View at Publisher · View at Google Scholar
  39. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996. View at Scopus
  40. R. Kistler, E. Kalnay, W. Collins et al., “The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation,” Bulletin of the American Meteorological Society, vol. 82, no. 2, pp. 247–267, 2001. View at Scopus
  41. M. Kanamitsu, W. Ebisuzaki, J. Woollen et al., “NCEP-DOE AMIP-II reanalysis (R-2),” Bulletin of the American Meteorological Society, vol. 83, no. 11, pp. 1631–1643, 2002. View at Scopus
  42. S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005.
  43. D. F. Parrish and J. C. Derber, “The National Meteorological Center's spectral statistical- interpolation analysis system,” Monthly Weather Review, vol. 120, no. 8, pp. 1747–1763, 1992. View at Scopus
  44. P. Courtier, “The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: formulation,” Quarterly Journal of the Royal Meteorological Society, vol. 124, no. 550, pp. 1783–1807, 1998. View at Scopus
  45. M. C. Serreze, “Climatological aspects of cyclone development and decay in the arctic,” Atmosphere, vol. 33, no. 1, pp. 1–23, 1995. View at Scopus
  46. T. Eichler and W. Higgins, “Climatology and ENSO-related variability of North American extratropical cyclone activity,” Journal of Climate, vol. 19, no. 10, pp. 2076–2093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. D. W. J. Thompson and S. Solomon, “Interpretation of recent Southern Hemisphere climate change,” Science, vol. 296, no. 5569, pp. 895–899, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. V. E. Kousky and R. W. Higgins, “An alert classification system for monitoring and assessing the ENSO cycle,” Weather and Forecasting, vol. 22, no. 2, pp. 353–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Nan and J. Li, “The relationship between summer precipitation in the Yangtze River valley and the previous Southern Hemisphere Annular Mode,” Geophysical Research Letters, vol. 30, no. 24, p. 2266, 2003. View at Publisher · View at Google Scholar
  50. D. Gong and S. Wang, “Definition of Antarctic oscillation index,” Geophysical Research Letters, vol. 26, no. 4, pp. 459–462, 1999. View at Scopus
  51. I. Simmonds, K. Keay, and E. Lim, “Synoptic activity in the seas around Antarctica,” Monthly Weather Review, vol. 131, no. 2, pp. 272–288, 2003. View at Scopus
  52. U. Ulbrich, G. C. Leckebusch, and J. G. Pinto, “Extra-tropical cyclones in the present and future climate: a review,” Theoretical and Applied Climatology, vol. 96, no. 1-2, pp. 117–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 167–180, 1991. View at Scopus
  54. M. G. Akperov and I. I. Mokhov, “A comparative analysis of the method of extratropical cyclone identification,” Izvestiya, vol. 46, no. 5, pp. 574–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Tilinia, S. K. Gulev, I. Rudeva, and P. Koltermann, “Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses,” Journal of Climate, vol. 26, pp. 6419–6438, 2013.
  56. J. Min, Q. Zhou, N. Liu, Q. Gao, and Z. Guan, “Teleconnection mode between IOD and Northern Hemisphere tropospheric circulation and its mechanism,” Meteorology and Atmospheric Physics, vol. 100, pp. 207–215, 2008.
  57. I. Simmonds, “Modes of atmospheric variability over the Southern Ocean,” Journal of Geophysical Research, vol. 108, p. 8078, 2003. View at Publisher · View at Google Scholar