About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2014 (2014), Article ID 202868, 5 pages
http://dx.doi.org/10.1155/2014/202868
Research Article

Aerosol Modulation of Ultraviolet Radiation Dose over Four Metro Cities in India

1Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India
2Universities Space Research Association, Columbia, MD 21044, USA
3Department of Environmental Atmospheric Sciences, Pukyong National University, Busan 608737, Republic of Korea

Received 12 September 2013; Revised 20 November 2013; Accepted 21 November 2013; Published 2 January 2014

Academic Editor: Pavan S. Kulkarni

Copyright © 2014 A. S. Panicker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper discusses the influence of aerosols on UV erythemal dose over four metro cities in India. Tropospheric Emission Monitoring Internet Service (TEMIS), archived UV-index (UV-I), and UV daily erythemal dose obtained from SCIAMACHY satellite were used in this study during June 2004 and May 2005 periods covering four important Indian seasons. UV-Index (UV-I), an important parameter representing UV risk, was found to be in the high to extreme range in Chennai (8.1 to 15.33), moderate to extreme range in Mumbai and Kolkata (5 to 16.5), and low to extreme over Delhi (3 to 15). Average UV erythemal dose showed seasonal variation from 5.9 to 6.3 KJm−2 during summer, 2.9 to 4.4 KJm−2 during postmonsoon, 3 to 4.5 KJm−2 during winter, and 5.1 to 6.19 KJm−2 during premonsoon seasons over the four cities. To estimate the influence of aerosols on reducing UV dose, UV aerosol radiative forcing and forcing efficiency were estimated over the sites. The average aerosol forcing efficiency was found to be from to  KJm−2 AOD−1 on different seasons. The study suggests that aerosols can reduce the incoming UV radiation dose by 30–60% during different seasons.