About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2014 (2014), Article ID 269059, 8 pages
http://dx.doi.org/10.1155/2014/269059
Research Article

Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

Tao Gao1,2,3 and Lian Xie1,3

1Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education of China, Qingdao 266100, China
2Department of Resources and Environmental Sciences, Heze University, Heze 274000, China
3Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

Received 22 November 2013; Accepted 4 December 2013; Published 8 January 2014

Academic Editor: Huiwang Gao

Copyright © 2014 Tao Gao and Lian Xie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Easterling, G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, “Climate extremes: observations, modeling, and impacts,” Science, vol. 289, no. 5487, pp. 2068–2074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Marosz, W. Jcik R, and M. Pilarski, “Extreme daily precipitation totals in Poland during summer: the role of regional atmospheric circulation,” Climate Research, vol. 56, pp. 245–259, 2013.
  3. S. C. Pryor, R. J. Barthelmie, and J. T. Schoof, “High-resolution projections of climate-related risks for the Midwestern USA,” Climate Research, vol. 56, no. 1, pp. 61–79, 2013.
  4. D. L. Zhang, Y. Lin, P. Zhao, et al., “The Beijing extreme rainfall of 21 July 2012:, “Right results” but for wrong reasons,” Geophysical Research Letters, vol. 40, no. 7, pp. 1426–1431, 2013.
  5. W. L. Steffen, L. Hughes, and D. J. Karoly, The Critical Decade: Extreme Weather Climate Commission Secretariat, Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education, 2013.
  6. L. V. Alexander, X. Zhang, T. C. Peterson et al., “Global observed changes in daily climate extremes of temperature and precipitation,” Journal of Geophysical Research D, vol. 111, no. 5, Article ID D05109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Solomon, D. Qin, M. Manning, et al., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2007.
  8. J. Sillmann, V. V. Kharin, F. W. Zwiers, et al., “Climate extremes indices in the CMIP5 multimodel ensemble—part 2: future climate projections,” Journal of Geophysical Research, vol. 118, no. 6, pp. 2473–2493, 2013.
  9. D. P. Rowell, “Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations,” Journal of Climate, vol. 11, no. 2, pp. 109–120, 1998. View at Scopus
  10. A. Persechino, J. Mignot, D. Swingedouw, et al., “Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model,” Climate Dynamics, vol. 40, no. 9, pp. 2359–2380, 2013.
  11. R. L. Wilby, S. P. Charles, E. Zorita, et al., Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods, 2004.
  12. K. Fan, “A prediction model for atlantic named storm frequency using a year-by-year increment approach,” Weather and Forecasting, vol. 25, no. 6, pp. 1842–1851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Fan, H. Wang, and Y.-J. Choi, “A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall,” Chinese Science Bulletin, vol. 53, no. 4, pp. 602–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Zhang, C.-Y. Xu, Z. Zhang, Y. D. Chen, C.-L. Liu, and H. Lin, “Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation,” Journal of Hydrology, vol. 353, no. 3-4, pp. 215–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Su, M. Gemmer, and T. Jiang, “Spatial and temporal variation of extreme precipitation over the Yangtze River Basin,” Quaternary International, vol. 186, no. 1, pp. 22–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Riyu, “Anomalies in the tropics associated with the heavy rainfall in East Asia during the summer of 1998,” Advances in Atmospheric Sciences, vol. 17, no. 2, pp. 205–220, 2000.
  17. Y. D. Chen, Q. Zhang, M. Xiao, et al., “Precipitation extremes in the Yangtze River Basin, China: regional frequency and spatial-temporal patterns,” in Theoretical and Applied Climatology, pp. 1–15, Springer, 2013.
  18. H. Yin and C. Li, “Human impact on floods and flood disasters on the Yangtze River,” Geomorphology, vol. 41, no. 2, pp. 105–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Zhai, X. Zhang, H. Wan, and X. Pan, “Trends in total precipitation and frequency of daily precipitation extremes over China,” Journal of Climate, vol. 18, no. 7, pp. 1096–1108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996. View at Scopus
  21. E. B. Kraus, “Subtropical droughts and cross-equatorial energy transports,” Monthly Weather Review, vol. 105, pp. 1009–1018, 1977.
  22. J. Sun, H. Wang, and W. Yuan, “A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall,” International Journal of Climatology, vol. 29, no. 9, pp. 1276–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. H. Myers, Classical and Modern Regression with Applications, Duxbury Press, Belmont, Calif, USA, 2nd edition, 1990.
  24. H. Seppä and H. J. B. Birks, “July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions,” Holocene, vol. 11, no. 5, pp. 527–539, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol. AC-19, no. 6, pp. 716–723, 1974. View at Scopus
  26. Y. Ding, Z. Wang, and Y. Sun, “Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon—part I: observed evidences,” International Journal of Climatology, vol. 28, no. 9, pp. 1139–1161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. R. Cayan, “Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature,” Journal of Physical Oceanography, vol. 22, no. 8, pp. 859–881, 1992. View at Scopus
  28. A. Pauling, J. Luterbacher, C. Casty, and H. Wanner, “Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation,” Climate Dynamics, vol. 26, no. 4, pp. 387–405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Bichet, D. Folini, M. Wild, et al., “Enhanced Central European summer precipitation in the late 19th century: a link to the Tropics,” Quarterly Journal of the Royal Meteorological Society, 2013. View at Publisher · View at Google Scholar
  30. G. A. Meehl, T. Stocker, W. Collins, et al., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
  31. L. Ning and Y. Qian, “Interdecadal change in extreme precipitation over South China and its mechanism,” Advances in Atmospheric Sciences, vol. 26, no. 1, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. L. V. Alexander, P. Uotila, and N. Nicholls, “Influence of sea surface temperature variability on global temperature and precipitation extremes,” Journal of Geophysical Research D, vol. 114, no. 18, Article ID D18116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. F. Diaz, C. D. Studzinski, and C. R. Mechoso, “Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans,” Journal of Climate, vol. 11, no. 2, pp. 251–271, 1998. View at Scopus
  34. S. Yao, Q. Huang, Y. Zhang, et al., “The simulation of water vapor transport in East Asia using a regional air-sea coupled model,” Journal of Geophysical Research, vol. 118, no. 4, pp. 1585–1600, 2013.
  35. Z. Wang and Y. Yang, Research on Business Model Running of Wheat Drought Remote Monitoring Before Mound Closure in Shandong China, IEEE, 2011.
  36. T. Wu and Z. Qian, “The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: an observational investigation,” Journal of Climate, vol. 16, no. 12, pp. 2038–2051, 2003.
  37. A. Duan, M. Wang, Y. Lei, et al., “Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008,” Journal of Climate, vol. 26, no. 1, pp. 261–275, 2013.
  38. P. Zhao, S. Yang, and R. Yu, “Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming,” Journal of Climate, vol. 23, no. 6, pp. 1544–1562, 2010.
  39. D. W. J. Thompson and J. M. Wallace, “Annular modes in the extratropical circulation—part I: month-to-month variability,” Journal of Climate, vol. 13, no. 5, pp. 1000–1016, 2000. View at Scopus
  40. K. Fan and H. Wang, “Antarctic oscillation and the dust weather frequency in North China,” Geophysical Research Letters, vol. 31, no. 10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. J. Thompson and J. M. Wallace, “Regional climate impacts of the Northern Hemisphere annular mode,” Science, vol. 293, no. 5527, pp. 85–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Gong, J. Zhu, and S. Wang, “Significant relationship between spring AO and the summer rainfall along the Yangtze River,” Chinese Science Bulletin, vol. 47, no. 11, pp. 948–951, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ju, J. Lü, J. Cao, and J. Ren, “Possible impacts of the Arctic Oscillation on the interdecadal variation of summer monsoon rainfall in East Asia,” Advances in Atmospheric Sciences, vol. 22, no. 1, pp. 39–48, 2005. View at Scopus
  44. D.-Y. Gong, J. Yang, S.-J. Kim et al., “Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific,” Climate Dynamics, vol. 37, no. 11-12, pp. 2199–2216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Wu, Z. Hu, and B. P. Kirtman, “Evolution of ENSO-related rainfall anomalies in East Asia,” Journal of Climate, vol. 16, no. 22, pp. 3742–3758, 2003.
  46. J. Tong, Z. Qiang, Z. Deming, and W. Yijin, “Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003),” Quaternary International, vol. 144, no. 1, pp. 29–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Sundaram, Q. Z. Yin, A. Berger, and H. Muri, “Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago,” Climate Dynamics, vol. 39, no. 5, pp. 1093–1105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Zhao, S. Yang, H. Wang, and Q. Zhang, “Interdecadal relationships between the Asian-Pacific oscillation and summer climate anomalies over Asia, North Pacific, and North America during a recent 100 years,” Journal of Climate, vol. 24, no. 18, pp. 4793–4799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. Kang, L. M. Polvani, J. C. Fyfe, et al., “Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer,” Geophysical Research Letters, vol. 40, no. 19, pp. 4054–4059, 2013.