Advances in Meteorology http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Evaluation of Arctic Land Snow Cover Characteristics, Surface Albedo, and Temperature during the Transition Seasons from Regional Climate Model Simulations and Satellite Data Thu, 18 Sep 2014 08:03:54 +0000 http://www.hindawi.com/journals/amete/2014/604157/ This paper evaluates the simulated Arctic land snow cover duration, snow water equivalent, snow cover fraction, surface albedo, and land surface temperature in the regional climate model HIRHAM5 during 2008–2010, compared with various satellite and reanalysis data and one further regional climate model (COSMO-CLM). HIRHAM5 shows a general agreement in the spatial patterns and annual course of these variables, although distinct biases for specific regions and months are obvious. The most prominent biases occur for east Siberian deciduous forest albedo, which is overestimated in the simulation for snow covered conditions in spring. This may be caused by the simplified albedo parameterization (e.g., nonconsideration of different forest types and neglecting the effect of fallen leaves and branches on snow for deciduous tree forest). The land surface temperature biases mirror the albedo biases in their spatial and temporal structures. The snow cover fraction and albedo biases can explain the simulated land surface temperature bias of ca. −3°C over the Siberian forest area in spring. X. Zhou, H. Matthes, A. Rinke, K. Klehmet, B. Heim, W. Dorn, D. Klaus, K. Dethloff, and B. Rockel Copyright © 2014 X. Zhou et al. All rights reserved. Accumulation Studies at a High Elevation Glacier Site in Central Karakoram Wed, 17 Sep 2014 07:24:42 +0000 http://www.hindawi.com/journals/amete/2014/215162/ The precipitation conditions in central Karakoram are investigated on the basis of snow samples from high elevated snow pits at Urdok glacier from 2006 and the analysis of atmospheric transport trajectories in combination with the general, large scale pressure distribution. Our analysis shows that accumulation at the high elevated regions of the central Karakoram is dominated by the west wind circulation (WWC). Incursions of the South Asian monsoon (SAM) occur sometimes during the summer months accompanied by strong precipitation but play a minor role for the total accumulation amount. Dust layers found in the snow pits show a rare earth elements signature which indicates that the dust very likely originates from the arid regions of western China and Central Asia. Our trajectory calculations based on NCEP/NCAR reanalysis data confirm that especially during late spring and early summer the westerly flow is redirected over the Tarim basin to reach central Karakoram from an East/Southeast direction. The preservation of the layer structure and the clear seasonal signals in the snow pits indicate that locations above 5200 m in central Karakoram will be suitable places for retrieving longer climate records from ice cores. Christoph Mayer, Astrid Lambrecht, Hans Oerter, Margit Schwikowski, Elisa Vuillermoz, Nicola Frank, and Guglielmina Diolaiuti Copyright © 2014 Christoph Mayer et al. All rights reserved. The Role of the Dominant Modes of Precipitation Variability over Eastern Africa in Modulating the Hydrology of Lake Victoria Tue, 16 Sep 2014 11:44:58 +0000 http://www.hindawi.com/journals/amete/2014/516762/ Previous water budget studies over Lake Victoria basin have shown that there is near balance between rainfall and evaporation and that the variability of Lake Victoria levels is determined virtually entirely by changes in rainfall since evaporation is nearly constant. The variability of rainfall over East Africa is dominated by El Niño-Southern Oscillation (ENSO); however, the second and third most dominant rainfall climate modes also account for significant variability across the region. The relationship between ENSO and other significant modes of precipitation variability with Lake Victoria levels is nonlinear. This relationship should be studied to determine which modes need to be accurately modeled in order to accurately model Lake Victoria levels, which are important to the hydroelectric industry in East Africa. The objective of this analysis is to estimate the relative contributions of the dominant modes of annual precipitation variability to the modulation of Lake Victoria levels for the present day (1950–2012). The first mode of annual rainfall variability accounts for most of the variability in Lake Victoria levels, while the effects of the second and third modes are negligible even though these modes are also significant over the region. Kara A. Smith and Fredrick H. M. Semazzi Copyright © 2014 Kara A. Smith and Fredrick H. M. Semazzi. All rights reserved. Climate Change Scenarios of Precipitation Extremes in the Carpathian Region Based on an Ensemble of Regional Climate Models Tue, 16 Sep 2014 11:04:51 +0000 http://www.hindawi.com/journals/amete/2014/943487/ The study examines projected changes in precipitation extremes, aggregated on several time scales (1 hour, 1 day, and 5 days), in simulations of 12 regional climate models (RCMs) with high spatial resolution (~25 km). The study area is the Carpathian Basin (Central and Southeastern Europe) which has a complex topography and encompasses the whole territory of Slovakia and Hungary as well as major parts of Romania and western Ukraine. We focus on changes in mean seasonal maxima and high quantiles (50-year return values) projected for the late 21st century (time slice 2070–2099) in comparison to the control period (time slice 1961–1990), for summer and winter. The 50-year return values are estimated by means of a regional frequency analysis based on the region-of-influence method, which reduces random variability and leads to more reliable estimates of high quantiles. In winter, all examined characteristics of precipitation (seasonal totals, mean seasonal maxima, and 50-year return values for both short-term and multi-day aggregations) show similar patterns of projected increases for the late 21st century. In summer, by contrast, drying is projected for seasonal totals in all RCMs while increases clearly prevail for the 50-year return values. The projected increases are larger for short-term (hourly) extremes that are more directly related to convective activity than multiday extremes. This suggests that the probability of occurrence of flash floods may increase more than that of large-scale floods in a warmer climate. The within-ensemble variability (and associated uncertainty) is, nevertheless, much larger in summer than in winter. Ladislav Gaál, Romana Beranová, Kamila Hlavčová, and Jan Kyselý Copyright © 2014 Ladislav Gaál et al. All rights reserved. A Numerical Investigation of the Precipitation over Lake Victoria Basin Using a Coupled Atmosphere-Lake Limited-Area Model Mon, 15 Sep 2014 07:52:44 +0000 http://www.hindawi.com/journals/amete/2014/960924/ By using a coupled atmosphere-lake model, which consists of the Weather Research and Forecasting (WRF) model and the Princeton Ocean Model (POM), the present study generated realistic lake surface temperature (LST) over Lake Victoria and revealed the prime importance of LST on the precipitation pattern over the Lake Victoria Basin (LVB). A suite of sensitivity experiments was conducted for the selection of an optimal combination of physics options including cumulus, microphysics, and planetary boundary layer schemes for simulating precipitation over the LVB. The WRF-POM coupled system made a great performance on simulating the expected LST, which is featured with eastward temperature gradient as in the real bathymetry of the lake. Under thorough examination of diagnostic analysis, a distinguished diurnal phenomenon has been unveiled. The precipitation mainly occurs during the nocturnal peak between midnight and early in the morning, which is associated with the strong land breeze circulation, when the lake temperature is warmer than the adjacent land. Further exploration of vertical velocity, surface divergence pattern, and maximum radar reflectivity confirms such conjecture. The time-longitude analysis of maximum radar reflectivity over the entire lake also shows a noticeable pattern of dominating westward propagation. Xia Sun, Lian Xie, Fredrick H. M. Semazzi, and Bin Liu Copyright © 2014 Xia Sun et al. All rights reserved. New Role of Thermal Mapping in Winter Maintenance with Principal Components Analysis Tue, 09 Sep 2014 08:11:13 +0000 http://www.hindawi.com/journals/amete/2014/254795/ Thermal mapping uses IR thermometry to measure road pavement temperature at a high resolution to identify and to map sections of the road network prone to ice occurrence. However, measurements are time-consuming and ultimately only provide a snapshot of road conditions at the time of the survey. As such, there is a need for surveys to be restricted to a series of specific climatic conditions during winter. Typically, five to six surveys are used, but it is questionable whether the full range of atmospheric conditions is adequately covered. This work investigates the role of statistics in adding value to thermal mapping data. Principal components analysis is used to interpolate between individual thermal mapping surveys to build a thermal map (or even a road surface temperature forecast), for a wider range of climatic conditions than that permitted by traditional surveys. The results indicate that when this approach is used, fewer thermal mapping surveys are actually required. Furthermore, comparisons with numerical models indicate that this approach could yield a suitable verification method for the spatial component of road weather forecasts—a key issue currently in winter road maintenance. Mario Marchetti, Lee Chapman, Abderrahmen Khalifa, and Michel Buès Copyright © 2014 Mario Marchetti et al. All rights reserved. A Regionalization of Downscaled GCM Data Considering Geographical Features in a Mountainous Area Mon, 08 Sep 2014 08:23:04 +0000 http://www.hindawi.com/journals/amete/2014/473167/ This study establishes a methodology for the application of downscaled GCM data in a mountainous area having large spatial variations of rainfall and attempts to estimate the change of rainfall characteristics in the future under climate change. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. neural network-simple kriging with varying local means (ANN-SKlm) has been built by combining the artificial neural network, which is one of the general downscaling techniques, with the SKlm regionalization technique, which can reflect the geomorphologic characteristics. The ANN-SKlm technique was compared with the Thiessen technique and the ordinary kriging (OK) technique in the study area and the SKlm technique showed the best results. Future rainfall levels have been predicted by downscaling the data from CNRM-CM3 climate model, which was simulated under the A1B scenario. According to the results of future annual average rainfall by each regionalization technique, the Thiessen and OK techniques underestimated the future rainfall when compared to the ANN-SKlm technique. Therefore this methodology will be very useful for the prediction of future rainfall levels under climate change, most notably in a mountainous area. Soojun Kim, Jaewon Kwak, Hung Soo Kim, Yonsoo Kim, Narae Kang, Seung Jin Hong, and Jongso Lee Copyright © 2014 Soojun Kim et al. All rights reserved. Mitigating the Urban Heat Island Effect in Megacity Tehran Sun, 07 Sep 2014 09:44:16 +0000 http://www.hindawi.com/journals/amete/2014/547974/ Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI) effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM), greenery on the surface and on the roofs (VEG), and a combination of them (HYBRID) has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K) is much higher than HAM (0.16 K), although high-density trees show a negative effect on nocturnal cooling. Sahar Sodoudi, Parisa Shahmohamadi, Ken Vollack, Ulrich Cubasch, and A. I. Che-Ani Copyright © 2014 Sahar Sodoudi et al. All rights reserved. Atmospheric Error Correction of the Laser Beam Ranging Sun, 07 Sep 2014 06:13:03 +0000 http://www.hindawi.com/journals/amete/2014/294741/ Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared. J. Saydi, A. Lotfalian, M. Abedi, J. Khalilzadeh, and H. Saghafifar Copyright © 2014 J. Saydi et al. All rights reserved. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy Mon, 01 Sep 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/292768/ The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5) archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades. Sujay Kulkarni and Huei-Ping Huang Copyright © 2014 Sujay Kulkarni and Huei-Ping Huang. All rights reserved. Dust Identification over Arid and Semiarid Regions of Asia Using AIRS Thermal Infrared Channels Sun, 31 Aug 2014 14:37:07 +0000 http://www.hindawi.com/journals/amete/2014/847432/ Asia dust generated in northern China exerts significant influences on regional air quality, weather, and climate. In this study, a dust identification algorithm over arid and semiarid regions of Asia was proposed based on the thermal observations of atmospheric infrared sounder (AIRS). Firstly, a combination of the line-by-line (LBL) and discrete ordinates radiative transfer (DISORT) model was utilized to investigate the thermal infrared signatures of dust and cloud in 800–1250 cm−1 region. Secondly, six channels in the thermal infrared region were selected from AIRS to monitor dust from space, and a further sensitivity analysis for dust and cloud under different conditions was also performed. Then, the description of the detailed identification method was provided based on distinct thermal infrared signature of dust. At last, several dust events that observed in northern China between the period of 2008 and 2012 were analyzed, and the usefulness of monitoring the outbreaks of Asian dust was emphasized through the comparison with moderate resolution imaging spectroradiometer (MODIS) visible observations and cloud aerosol lidar with orthogonal polarization (CALIOP) data in this study. Hui Xu, Tianhai Cheng, Donghai Xie, Jiaguo Li, Yu Wu, and Hao Chen Copyright © 2014 Hui Xu et al. All rights reserved. Downscaling Maximum Temperatures to Subkilometer Resolutions in the Shenandoah National Park of Virginia, USA Sun, 31 Aug 2014 12:04:55 +0000 http://www.hindawi.com/journals/amete/2014/594965/ Downscaling future temperature projections to mountainous regions is vital for many applications, including ecological and water resource management. In this study, we demonstrate a method to downscale maximum temperatures to subkilometer resolutions using the Parameter-elevation Regression on Independent Slopes Model (PRISM). We evaluate the downscaling method with observations from a network of temperature sensors deployed along western and eastern slopes of Virginia’s Shenandoah National Park in the southern Appalachian Mountains. We find that the method overestimates mean July maximum temperatures by about 2°C (4°C) along the western (eastern) slopes. Based on this knowledge, we introduce corrections to generate maps of current and future maximum temperatures in the Shenandoah National Park. Temple R. Lee, Stephan F. J. De Wekker, and John E. B. Wofford Copyright © 2014 Temple R. Lee et al. All rights reserved. Automatic Tracking and Characterization of Cumulonimbus Clouds from FY-2C Geostationary Meteorological Satellite Images Sun, 31 Aug 2014 09:35:24 +0000 http://www.hindawi.com/journals/amete/2014/478419/ This paper presents an automated method to track cumulonimbus (Cb) clouds based on cloud classification and characterizes Cb behavior from FengYun-2C (FY-2C). First, a seeded region growing (SRG) algorithm is used with artificial neural network (ANN) cloud classification as preprocessing to identify consistent homogeneous Cb patches from infrared images. Second, a cross-correlation-based approach is used to track Cb patches within an image sequence. Third, 7 pixel parameters and 19 cloud patch parameters of Cb are derived. To assess the performance of the proposed method, 8 cases exhibiting different life stages and the temporal evolution of a single case are analyzed. The results show that (1) the proposed method is capable of locating and tracking Cb until dissipation and can account for the eventual splitting or merging of clouds; (2) compared to traditional brightness temperature (TB) thresholds-based cloud tracking methods, the proposed method reduces the uncertainty stemming from TB thresholds by classifying clouds with multichannel data in an advanced manner; and (3) the configuration and developmental stages of Cb that the method identifies are close to reality, suggesting that the characterization of Cb can provide detailed insight into the study of the motion and development of thunderstorms. Yu Liu, Du-Gang Xi, Zhao-Liang Li, and Chun-Xiang Shi Copyright © 2014 Yu Liu et al. All rights reserved. Monitoring of the Deposition of PAHs and Metals Produced by a Steel Plant in Taranto (Italy) Thu, 28 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/598301/ A high time-resolved monitoring campaign of bulk deposition of PAHs and metals was conducted near the industrial area and at an urban background site in province of Taranto (Italy) in order to evaluate the impact of the biggest European steel plant. The deposition fluxes of the sum of detected PAHs at the industrial area ranged from 92 to 2432 ng m−2d−1. In particular the deposition fluxes of BaP, BaA, and BkF were, on average, 10, 14, and 8 times higher than those detected at the urban background site, respectively. The same finding was for metals. The deposition fluxes of Ni (19.8 µg m−2 d−1) and As (2.2 µg m−2 d−1) at the industrial site were about 5 times higher than those at the urban background site, while the deposition fluxes of Fe (57 mg m−2d−1) and Mn (1.02 mg m−2d−1) about 31 times higher. Precipitation and wind speed played an important role in PAH deposition fluxes. Fe and Mn fluxes at the industrial site resulted high when wind direction favored the transport of air masses from the steel plant to the receptor site. The impact of the industrial area was also confirmed by IP/(IP + BgP), IP/BgP, and BaP/BgP diagnostic ratios. M. Amodio, G. de Gennaro, A. Di Gilio, and M. Tutino Copyright © 2014 M. Amodio et al. All rights reserved. Litter Production and Nutrient Dynamic on a Moso Bamboo Plantation following an Extreme Disturbance of 2008 Ice Storm Thu, 28 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/750865/ Ice storm is known to play a role in determining forest succession and litter dynamics constitute an important aspect of nutrient cycling in forest ecosystems. However, ice storm effects on amount and pattern of litterfall are not clearly understood. We investigated litter production and litter leaf nutrient dynamic in a moso bamboo plantation in China following an extreme disturbance of ice storm in 2008. The litterfall in on-years was significantly lower than in off-years. Ice storm caused total litterfall increasing from 16.68% to 35.60% and greatly disturbed the litterfall peak rhythm especially in the on-year. The litter leaf nutrient concentrations at two latitudes significantly fluctuated after ice-snow disaster in 2008, litter leaf stoichiometric traits indicated that litter leaf chemistry showed more easily decomposition with higher C/P ratio, N/P ratio, and lower C/N ratio. It is clear from this study that litterfall restoration dynamic would result in long-term changes in litter nutrient cycling and may help predicting below ground carbon dynamic in future research as well as subtropical forest inventories following extreme disturbance. Xiaogai Ge, Benzhi Zhou, and Yilin Tang Copyright © 2014 Xiaogai Ge et al. All rights reserved. Source Allocation of Long-Range Asian Dusts Transportation across the Taiwan Strait by Innovative Chemical-Assisted Identification Methods Wed, 27 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/268037/ This study used the backward trajectory calculation to obtain the transportation routes of Asian dusts and further combined the chemical composition with the enrichment factor (EF) and the grey relational analysis (GR) to identify the potential sources of eighteen Asian dust storm (ADS) events. The results showed that the chemical compositions of atmospheric particles sampled at the Pescadores Islands were very similar to source soils fugitively emitted from Inner Mongolia, which could assist in identifying the source regions of Asian dusts. This study further compared the source allocation of Asian dusts obtained from EF, GR, and backward trajectory, which showed that the source regions of Asian dusts obtained from these three methods were quite similar. The similarity of backward trajectory and GR reached as high as 83.3%. Moreover, the similarity of backward trajectory calculation and EF or GR was up to 77.8% while that of the GR and EF was up to 83.3%. Overall, these three methods can successfully allocate the source regions of Asian dusts by 66.7%. Moreover, these innovative chemical-assisted methods can be successfully applied to identify the source regions of Asian dusts for 18 ADS events. Yi-Hsiu Jen, Yi-Chi Liu, Iau-Ren Ie, Chung-Shin Yuan, and Chung-Hsuang Hung Copyright © 2014 Yi-Hsiu Jen et al. All rights reserved. Uncertainty Assessment: Reservoir Inflow Forecasting with Ensemble Precipitation Forecasts and HEC-HMS Wed, 27 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/581756/ During an extreme event, having accurate inflow forecasting with enough lead time helps reservoir operators decrease the impact of floods downstream. Furthermore, being able to efficiently operate reservoirs could help maximize flood protection while saving water for drier times of the year. This study combines ensemble quantitative precipitation forecasts and a hydrological model to provide a 3-day reservoir inflow in the Shihmen Reservoir, Taiwan. A total of six historical typhoons were used for model calibration, validation, and application. An understanding of cascaded uncertainties from the numerical weather model through the hydrological model is necessary for a better use for forecasting. This study thus conducted an assessment of forecast uncertainty on magnitude and timing of peak and cumulative inflows. It found that using the ensemble-mean had less uncertainty than randomly selecting individual member. The inflow forecasts with shorter length of cumulative time had a higher uncertainty. The results showed that using the ensemble precipitation forecasts with the hydrological model would have the advantage of extra lead time and serve as a valuable reference for operating reservoirs. Sheng-Chi Yang and Tsun-Hua Yang Copyright © 2014 Sheng-Chi Yang and Tsun-Hua Yang. All rights reserved. Noise Reduction Analysis of Radar Rainfall Using Chaotic Dynamics and Filtering Techniques Wed, 20 Aug 2014 07:29:47 +0000 http://www.hindawi.com/journals/amete/2014/517571/ The aim of this study is to evaluate the filtering techniques which can remove the noise involved in the time series. For this, Logistic series which is chaotic series and radar rainfall series are used for the evaluation of low-pass filter (LF) and Kalman filter (KF). The noise is added to Logistic series by considering noise level and the noise added series is filtered by LF and KF for the noise reduction. The analysis for the evaluation of LF and KF techniques is performed by the correlation coefficient, standard error, the attractor, and the BDS statistic from chaos theory. The analysis result for Logistic series clearly showed that KF is better tool than LF for removing the noise. Also, we used the radar rainfall series for evaluating the noise reduction capabilities of LF and KF. In this case, it was difficult to distinguish which filtering technique is better way for noise reduction when the typical statistics such as correlation coefficient and standard error were used. However, when the attractor and the BDS statistic were used for evaluating LF and KF, we could clearly identify that KF is better than LF. Soojun Kim, Huiseong Noh, Narae Kang, Keonhaeng Lee, Yonsoo Kim, Sanghun Lim, Dong Ryul Lee, and Hung Soo Kim Copyright © 2014 Soojun Kim et al. All rights reserved. Generalized Scaling of Urban Heat Island Effect and Its Applications for Energy Consumption and Renewable Energy Mon, 18 Aug 2014 14:06:40 +0000 http://www.hindawi.com/journals/amete/2014/948306/ In previous work from this laboratory, it has been found that the urban heat island intensity (UHI) can be scaled with the urban length scale and the wind speed, through the time-dependent energy balance. The heating of the urban surfaces during the daytime sets the initial temperature, and this overheating is dissipated during the night-time through mean convection motion over the urban surface. This may appear to be in contrast to the classical work by Oke (1973). However, in this work, we show that if the population density is used in converting the population data into urbanized area, then a good agreement with the current theory is found. An additional parameter is the “urban flow parameter,” which depends on the urban building characteristics and affects the horizontal convection of heat due to wind. This scaling can be used to estimate the UHI intensity in any cities and therefore predict the required energy consumption during summer months. In addition, all urbanized surfaces are expected to exhibit this scaling, so that increase in the surface temperature in large energy-consumption or energy-producing facilities (e.g., solar electric or thermal power plants) can be estimated. T.-W. Lee, Heung S. Choi, and Jinoh Lee Copyright © 2014 T.-W. Lee et al. All rights reserved. Forecasting Strategies for Haboobs: An Underreported Weather Phenomenon Mon, 18 Aug 2014 06:51:30 +0000 http://www.hindawi.com/journals/amete/2014/904759/ On June 5, 2013, Lubbock Texas is hit by a haboob at 10:30 pm. The storm is categorized as a wind event by television media and the dust component goes unreported. This event is used as a case study to evaluate the usefulness of the polarimetric variables differential reflectivity (ZDR) and correlation coefficient (CC) in identifying the storm as a haboob. Photographic evidence of the haboob is collected and correlated to NEXRAD signatures of base reflectivity and velocity from the Lubbock TX NEXRAD station (KLBB). NEXRAD level III products ZDR and CC are also obtained. The storm presents with gust front features to the north and east of the station. Low values returned from CC indicate nonmeteorological content. ZDR representations weakly indicate the presence of gust fronts to the east, with a stronger signal to the north. As no visual evidence of the northern gust front is available, the ZDR data are inconclusive. The correlation of low CC values to the visual representation of the haboob is an indicator that CC in combination with the NEXRAD base reflectivity and velocity products may be used to test wind events for the presence of sand, dust, and dirt and therefore exhibit predictive qualities. Mark J. Dempsey Copyright © 2014 Mark J. Dempsey. All rights reserved. Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor Mon, 18 Aug 2014 05:51:19 +0000 http://www.hindawi.com/journals/amete/2014/240452/ One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm) and coarse (2.49–3.49 μm) modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7) and imaginary (0.0005 to 0.09) parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89) at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function () and degree of linear polarization for incident unpolarized light () of dust aerosols were also obtained within this deserted area. Hua Xu, Zhengqiang Li, Donghui Li, Li Li, Xingfeng Chen, Yisong Xie, Kaitao Li, Cheng Chen, and Yuhuan Zhang Copyright © 2014 Hua Xu et al. All rights reserved. Forecasting Hydrological Disaster Using Environmental Thermographic Modeling Tue, 12 Aug 2014 09:42:11 +0000 http://www.hindawi.com/journals/amete/2014/783718/ The concept of thermographic model is new to environmental studies. Its mode of operation is fairly synonymous to the operational technique of the regular thermography machine. The location of the study area is between latitudes 8°24′N and 9°20′N of the equator and between longitudes 7°30′E and 8°48′E of the Greenwich Meridian. The subsoil for the soil samples was identified within the particles range 63 ± 3% sand, 28 ± 5% clay, 6 ± 2% silt, 0.9 ± 0.3% organic carbon, and 1 ± 0.2% organic matter. Field work was carried out and the measurements obtained were validated using satellite data. At shallow ground depth, the thermal diffusivity is not proportional to either the increase or the decrease in the ground temperatures. Features of the temperature anomaly showed strange shifts per month within 2012. The environmental thermographic model (ETM) can be adopted by meteorological ground stations to investigate the net radiation over the land. The ability of the ETM could be extended to monitoring ground anomalies like fractures of basic rocks amongst others. Moses E. Emetere Copyright © 2014 Moses E. Emetere. All rights reserved. Fog Formation in Cold Season in Ji’nan, China: Case Analyses with Application of HYSPLIT Model Tue, 12 Aug 2014 08:58:04 +0000 http://www.hindawi.com/journals/amete/2014/940956/ Fog events almost happened every year in cold season in North China Plain. In this study, hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was applied to analyze the formation of four fog events occurring in Ji’nan, China, during the period from March 2012 to February 2014. Three types of fog have been distinguished, including radiation fog, advection fog, and frontal fog. When fog events happened, the average surface temperature ranged from near zero to 10°C and the relative humidity was around 90%. Fog events often happened immediately after haze episodes (i.e., fog-haze) and sometimes after light rain. Back trajectory analyses show that the air masses during the fog events mostly came from the local Shandong areas and moved in very slow speed (4–24 km h−1). During the fog events, the humidity along the air trajectories always gradually increased to saturation. The mixed layer depth was small, generally below 400 m at noon and around 100 m at midnight. However, the air temperature exhibited complex variations—sometimes decreased and sometimes kept stable or even increased. Xinfeng Wang and Jianmin Chen Copyright © 2014 Xinfeng Wang and Jianmin Chen. All rights reserved. Airmass Trajectories and Long Range Transport of Pollutants: Review of Wet Deposition Scenario in South Asia Tue, 12 Aug 2014 05:44:58 +0000 http://www.hindawi.com/journals/amete/2014/596041/ This paper presents a review of airmass trajectories and their role in air pollution transport. It describes the concept, history, and basic calculation of air trajectories citing various trajectory models used worldwide. It highlights various areas of trajectory applications and errors associated with trajectory calculations. South Asian region receives airmasses from Europe, Middle East, Africa, and Indian Ocean, and so forth, depending upon the season. These airmasses are responsible for export and import of pollutants depositing in nearby states. Trajectory analysis revealed that soil is contributed by the dust storms coming from Oman through Gulf and Iran, while most of black carbon (BC) sources are located in India. A detailed review of trajectories associated with wet deposition events indicated that airmasses coming from Europe and Middle East carry high concentration of acidic pollutants which are deposited in Himalayan ranges. Similarly, trajectory analysis revealed that acidic pollutants from continental anthropogenic sources are transported to an ecosensitive site in Western Ghats in India and the outward fluxes of anthropogenic activities of Indo-Gangetic region are transported towards Bay of Bengal. Hence, transboundary and long range transport of pollutants are very important issues in South Asia which need immediate attention of scientists and policy makers. Umesh Kulshrestha and Bablu Kumar Copyright © 2014 Umesh Kulshrestha and Bablu Kumar. All rights reserved. The Impact of Nonlocal Ammonia on Submicron Particulate Matter and Visibility Degradation in Urban Shanghai Tue, 05 Aug 2014 12:54:33 +0000 http://www.hindawi.com/journals/amete/2014/534675/ To study the role of submicron particulate matter on visibility degradation in Shanghai, mass concentrations of PM1, secondary inorganic aerosol (SIA) in PM1, and SIA precursor gasses were on-line monitored during a 4-week intensive campaign in December 2012. During the campaign, 8 haze periods were identified when on average PM1 mass increased to 62.1 ± 25.6 μg/m3 compared to 30.7 ± 17.1 μg/m3 during clear weather periods. The sum of SIA in PM1 increased in mass concentration during the haze from 14.9 ± 7.4 μg/m3 during clear periods to 29.7 ± 10.7 μg/m3 during the haze periods. Correlation coefficients (R2) of the visibility as function of mass concentrations of SIA species in PM1 show negative exponential relations implying the importance of the SIA species in visibility reduction. The important role of ammonia in SIA formation is recognized and demonstrated. Generally, ammonium neutralizes sulfate and nitrate and the molar equivalent ratio of ammonium versus the sum of sulfate and nitrate increases during the haze episodes. Air mass backward trajectories introducing the haze periods show the impact of nonlocal ammonia on visibility degradation in Shanghai. Roeland Cornelis Jansen, Jianmin Chen, and Yunjie Hu Copyright © 2014 Roeland Cornelis Jansen et al. All rights reserved. Monitoring and Modeling Terrestrial Ecosystems’ Response to Climate Change Tue, 05 Aug 2014 05:26:27 +0000 http://www.hindawi.com/journals/amete/2014/429349/ Dong Jiang, Shengli Huang, and Dawei Han Copyright © 2014 Dong Jiang et al. All rights reserved. The Use of Trajectory Cluster Analysis to Evaluate the Long-Range Transport of Black Carbon Aerosol in the South-Eastern Baltic Region Thu, 24 Jul 2014 10:13:31 +0000 http://www.hindawi.com/journals/amete/2014/137694/ Trajectory cluster analysis and source-receptor models (the potential source contribution function (PSCF), concentration weighted trajectories (CWT), and trajectory source apportionment (TSA)) were applied to investigate the source-receptor relationship for the aerosol black carbon (BC) measured at the coastal site (Preila, 55.55°N, 21.04°E) during 2013. The main sources and paths of advection to the south-eastern Baltic region and its relation to black carbon concentration were identified. The 72 h backward trajectories of air masses arriving at Preila from January to December 2013 were determined and were categorized by clustering them into six clusters. Subsequently, BC levels at Preila associated with each air mass cluster during this period were analyzed. The PSCF and CWT analysis shows that, on high BC concentration days, the air masses commonly originated and passed over southern regions of Europe before arriving at Preila in winter, while a strong impact of wildfires was observed in spring. Steigvilė Byčenkienė, Vadimas Dudoitis, and Vidmantas Ulevicius Copyright © 2014 Steigvilė Byčenkienė et al. All rights reserved. Crop Yield and Temperature Changes in North China during 601–900 AD Thu, 24 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/amete/2014/137803/ Depending on the descriptions of crop yield and social response to crop failure/harvest from Chinese historical documents, we classified the crop yield of North China during 601–900 AD into six categories and quantified each category to be the crop yield grades. We found that the regional mean crop yield had a significant () negative trend at the rate of −0.24% per decade. The interannual, multiple-decadal, and century-scale variability accounted for ~47%, ~30%, and ~20% of the total variations of crop yield, respectively. The interannual variability was significantly () persistent across the entire period. The multiple-decadal variability was more dominant after 750 AD than that before 750 AD, while the century-scale variability was more dominant before 750 AD than that after 750 AD. The variations of crop yield could be partly explained by temperature changes. On one hand, the declining trend of crop yield cooccurred with the climate cooling trend from 601 to 900 AD; on the other hand, the crop yield was positively correlated with temperature changes at 30-year resolution with the correlation coefficient of 0.59 (). These findings supported that high (low) crop yield occurred in the warming (cooling) climate. Haolong Liu, Quansheng Ge, Jingyun Zheng, Zhixin Hao, and Xuezhen Zhang Copyright © 2014 Haolong Liu et al. All rights reserved. An Integrated Model for Simulating Regional Water Resources Based on Total Evapotranspiration Control Approach Mon, 14 Jul 2014 12:00:08 +0000 http://www.hindawi.com/journals/amete/2014/345671/ Total evapotranspiration and water consumption (ET) control is considered an efficient method for water management. In this study, we developed a water allocation and simulation (WAS) model, which can simulate the water cycle and output different ET values for natural and artificial water use, such as crop evapotranspiration, grass evapotranspiration, forest evapotranspiration, living water consumption, and industry water consumption. In the calibration and validation periods, a “piece-by-piece” approach was used to evaluate the model from runoff to ET data, including the remote sensing ET data and regional measured ET data, which differ from the data from the traditional hydrology method. We applied the model to Tianjin City, China. The Nash-Sutcliffe efficiency (Ens) of the runoff simulation was 0.82, and its regression coefficient was 0.92. The Nash-Sutcliffe Efficiency (Ens) of regional total ET simulation was 0.93, and its regression coefficient was 0.98. These results demonstrate that ET of irrigation lands is the dominant part, which accounts for 53% of the total ET. The latter is also a priority in ET control for water management. Jianhua Wang, Xuefeng Sang, Zhengli Zhai, Yang Liu, and Zuhao Zhou Copyright © 2014 Jianhua Wang et al. All rights reserved. Spatial and Temporal Variability of Precipitation in Haihe River Basin, China: Characterization and Management Implications Mon, 14 Jul 2014 08:26:50 +0000 http://www.hindawi.com/journals/amete/2014/143246/ Data analysis and characterization of precipitation in the Haihe River Basin (HRB) of China are required for management practices for the purpose of flood water control and utilization. In the companion paper, we presented precipitation data in the HRB during 1951–2010 and reported its basic statistics such as temporal trend and spatial variability. In this study, spatiotemporal variability on the precipitation was further investigated comprehensively for the underlying physics and the implication to water resource management. During the summer flood season of the study area, basin-wide precipitation was negatively correlated to average NINO3.4 index. Spatially, summer precipitation was correlated with gridded sea surface temperature (SST) observed in the eastern tropic Pacific Ocean and the western tropic Indian Ocean. SST in two representative areas was identified as potential predictors for precipitation in the HRB. No spatial or temporal correlations were confirmed between precipitation and soil moisture as annual averages in the study area. Copula analysis suggested about 40% possibility in a year with a potential for cross-watershed water diversion within HRB. Yuzhou Luo, Zhonggen Wang, Xiaomang Liu, and Minghua Zhang Copyright © 2014 Yuzhou Luo et al. All rights reserved.