About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2010 (2010), Article ID 169710, 20 pages
http://dx.doi.org/10.1155/2010/169710
Review Article

Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits

1Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NF, Canada A1C 5S7
2Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3Department of Mathematics, University of Toronto, Toronto, ON, M5S2E4, Canada

Received 31 August 2009; Accepted 10 February 2010

Academic Editor: Shao-Ming Fei

Copyright © 2010 M. Merkli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wendin and V. S. Shumeiko, “Quantum bits with Josephson junctions,” Low Temperature Physics, vol. 33, no. 9, pp. 724–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Kinion and J. Clarke, “Microstrip superconducting quantum interference device radio-frequency amplifier: scattering parameters and input coupling,” Applied Physics Letters, vol. 92, no. 17, Article ID 172503, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Reviews of Modern Physics, vol. 73, no. 2, pp. 357–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, “Coherent temporal oscillations of macroscopic quantum states in a Josephson junction,” Science, vol. 296, no. 5569, pp. 889–892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quantum Information Processing, vol. 3, no. 1–5, pp. 163–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Steffen, M. Ansmann, R. McDermott, et al., “State tomography of capacitively shunted phase qubits with high fidelity,” Physical Review Letters, vol. 97, no. 5, Article ID 050502, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Katz, M. Neeley, M. Ansmann, et al., “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Physical Review Letters, vol. 101, no. 20, Article ID 200401, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplifcation,” Reviews of Modern Physics, vol. 82, pp. 1155–1208, 2010.
  9. M. Merkli, I. M. Sigal, and G. P. Berman, “Decoherence and thermalization,” Physical Review Letters, vol. 98, no. 13, Article ID 130401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Merkli, I. M. Sigal, and G. P. Berman, “Resonance theory of decoherence and thermalization,” Annals of Physics, vol. 323, no. 2, pp. 373–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Merkli, G. P. Berman, and I. M. Sigal, “Dynamics of collective decoherence and thermalization,” Annals of Physics, vol. 323, no. 12, pp. 3091–3112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. P. Berman, D. I. Kamenev, and V. I. Tsifrinovich, “Collective decoherence of the superpositional entangled states in the quantum Shor algorithm,” Physical Review A, vol. 71, no. 3, Article ID 032346, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. R. Dalvit, G. P. Berman, and M. Vishik, “Dynamics of open bosonic quantum systems in coherent state representation,” Physical Review A, vol. 73, no. 1, Article ID 013803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L.-M. Duan and G.-C. Guo, “Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment,” Physical Review A, vol. 57, no. 2, pp. 737–741, 1998. View at Scopus
  15. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I. O. Stamatescu, Decoherence and The Appearence of a Classical World in Quantum Theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2nd edition, 2003.
  16. D. Mozyrsky and V. Privman, “Adiabatic decoherence,” Journal of Statistical Physics, vol. 91, no. 3–4, pp. 787–799, 1998. View at Scopus
  17. G. M. Palma, K.-A. Suominen, and A. K. Ekert, “Quantum computers and dissipation,” Proceedings of the Royal Society A, vol. 452, no. 1946, pp. 567–584, 1996. View at Scopus
  18. J. Shao, M.-L. Ge, and H. Cheng, “Decoherence of quantum-nondemolition systems,” Physical Review E, vol. 53, no. 1, pp. 1243–1245, 1996. View at Scopus
  19. M. Merkli, G. P. Berman, F. Borgonovi, and K. Gebresellasie, “Evolution of entanglement of two qubits interacting through local and collective environments,” Quantum Physics, preprint, http://arxiv.org/abs/1001.1144.
  20. M. Merkli and S. Starr, “A resonance theory for open quantum systems with time-dependent dynamics,” Journal of Statistical Physics, vol. 134, pp. 871–898, 2009.
  21. V. Bach, M. Merkli, W. Pedra, and I. M. Sigal, “Decoherence control,” in preparation.
  22. H.-P Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, UK, 2002.
  23. E. B. Davies, “Markovian master equations,” Communications in Mathematical Physics, vol. 39, no. 2, pp. 91–110, 1974. View at Publisher · View at Google Scholar · View at Scopus
  24. E. B. Davies, “Markovian master equations. II,” Mathematische Annalen, vol. 219, no. 2, pp. 147–158, 1976. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Dereziński and R. Früboes, Fermi Golden Rule and Open Quantum Systems, vol. 1882 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2006.
  26. V. Jakšić and C. A. Pillet, “From resonances to master equations,” Annales de l'Institut Henri Poincaré, vol. 67, no. 4, pp. 425–445, 1997.
  27. M. Merkli, “Level shift operators for open quantum systems,” Journal of Mathematical Analysis and Applications, vol. 327, no. 1, pp. 376–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, “Experimental investigation of a two-qubit decoherence-free subspace,” Physical Review Letters, vol. 92, no. 14, Article ID 147901, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Fedorov and L. Fedichkin, “Collective decoherence of nuclear spin clusters,” Journal of Physics Condensed Matter, vol. 18, no. 12, pp. 3217–3228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Merkli, M. Mück, and I. M. Sigal, “Instability of equilibrium states for coupled heat reservoirs at different temperatures,” Journal of Functional Analysis, vol. 243, no. 1, pp. 87–120, 2007. View at Publisher · View at Google Scholar · View at Scopus