About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2010 (2010), Article ID 342915, 31 pages
http://dx.doi.org/10.1155/2010/342915
Research Article

Dynamics of Entanglement between a Quantum Dot Spin Qubit and a Photon Qubit inside a Semiconductor High-Q Nanocavity

1CREOL College of Optics and Photonics, University of Central Florida, Orlando, FL 32826, USA
2NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
3Department of Physics, University of Central Florida, P. O. Box 162385, Orlando, FL 32816, USA

Received 15 September 2009; Accepted 24 November 2009

Academic Editor: Shao-Ming Fei

Copyright © 2010 Hubert Pascal Seigneur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Moehring, M. J. Madsen, K. C. Younge, et al., “Quantum networking with photons and trapped atoms (invited),” Journal of the Optical Society of America B, vol. 24, no. 2, pp. 300–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science, vol. 317, no. 5837, pp. 488–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. N. Leuenberger, M. E. Flatte, and D. D. Awschalom, “Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons,” Physical Review Letters, vol. 94, no. 10, Article ID 107401, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Optics Express, vol. 15, no. 9, pp. 5550–5558, 2007.
  5. M. Kroutvar, Y. Ducommun, D. Heiss, et al., “Optically programmable electron spin memory using semiconductor quantum dots,” Nature, vol. 432, no. 7013, pp. 81–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Physical Review B, vol. 54, no. 7, pp. 4843–4856, 1996. View at Scopus
  7. A. I. Ekimov, F. Hache, M. C. Schanneklein, et al., “Absorption and intensity-dependent photoluminescence measurements on Cdse quantum dots—assignment of the 1st electronic-transitions,” Journal of the Optical Society of America B, vol. 10, pp. 100–107, 1993. View at Publisher · View at Google Scholar
  8. C. Y. Hu, A. Young, J. L. O'Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Physical Review B, vol. 78, no. 8, Article ID 085307, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Seigneur, M. N. Leuenberger, and W. V. Schoenfeld, “Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect,” Journal of Applied Physics, vol. 104, no. 1, Article ID 014307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Reviews of Modern Physics, vol. 29, pp. 74–93, 1957. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, New York, NY, USA, 1997.
  12. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, pp. 3824–3851, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  13. A. Silberfarb and I. H. Deutsch, “Entanglement generated between a single atom and a laser pulse,” Physical Review A, vol. 69, no. 4, Article ID 042308, 8 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. N. Leuenberger, “Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots,” Physical Review B, vol. 73, no. 7, Article ID 075312, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. A. Merkulov, Al. L. Efros, and M. Rosen, “Electron spin relaxation by nuclei in semiconductor quantum dots,” Physical Review B, vol. 65, no. 20, Article ID 205309, 8 pages, 2002. View at Scopus
  16. B. Eble, C. Testelin, P. Desfonds, et al., “Hole-nuclear spin interaction in quantum dots,” Physical Review Letters, vol. 102, no. 14, Article ID 146601, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Dalgarno, J. M. Smith, J. McFarlane, et al., “Coulomb interactions in single charged self-assembled quantum dots: radiative lifetime and recombination energy,” Physical Review B, vol. 77, no. 24, Article ID 245311, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Munoz-Matutano, J. Gomis, B. Alen, et al., “Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping,” Physica E, vol. 40, no. 6, pp. 2100–2103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Testelin, F. Bernardot, B. Eble, and M. Chamarro, “Hole-spin dephasing time associated with hyperfine interaction in quantum dots,” Physical Review B, vol. 79, no. 19, Article ID 195440, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” Journal of Chemical Physics, vol. 121, no. 20, pp. 10104–10110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Eble, P.-F. Braun, O. Krebs, et al., “Spin dynamics and hyperfine interaction in InAs semiconductor quantum dots,” Physica Status Solidi B, vol. 243, no. 10, pp. 2266–2273, 2006. View at Publisher · View at Google Scholar · View at Scopus