About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2010 (2010), Article ID 501521, 11 pages
http://dx.doi.org/10.1155/2010/501521
Research Article

Partial Bell-State Analysis with Parametric down Conversion in the Wigner Function Formalism

1Departamento de Física Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla, Spain
2Centro Asociado de la Universidad Nacional de Educación a Distancia de Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Spain
3Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

Received 2 October 2009; Accepted 11 October 2009

Academic Editor: Adan Cabello

Copyright © 2010 A. Casado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Casado, A. Fernández-Rueda, T. Marshall, R. Risco-Delgado, and E. Santos, “Fourth-order interference in the Wigner representation for parametric down-conversion experiments,” Physical Review A, vol. 55, no. 5, pp. 3879–3890, 1997.
  2. A. Casado, T. W. Marshall, and E. Santos, “Type II parametric downconversion in the Wigner-function formalism: entanglement and Bell's inequalities,” Journal of the Optical Society of America B, vol. 15, no. 5, pp. 1572–1577, 1998. View at Publisher · View at Google Scholar
  3. A. Casado, A. Fernández-Rueda, T. Marshall, J. Martínez, R. Risco-Delgado, and E. Santos, “Dependence on crystal parameters of the correlation time between signal and idler beams in parametric down conversion calculated in the Wigner representation,” European Physical Journal D, vol. 11, no. 3, pp. 465–472, 2000. View at Publisher · View at Google Scholar
  4. A. Casado, T. Marshall, R. Risco-Delgado, and E. Santos, “Spectrum of the parametric down converted radiation calculated in the Wigner function formalism,” European Physical Journal D, vol. 13, no. 1, pp. 109–119, 2001. View at Publisher · View at Google Scholar
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of Modern Physics, vol. 74, no. 1, pp. 145–195, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Physical Review Letters, vol. 69, no. 20, pp. 2881–2884, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997. View at Publisher · View at Google Scholar
  8. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Physical Review Letters, vol. 80, no. 6, pp. 1121–1125, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Physical Review Letters, vol. 67, no. 6, pp. 661–663, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. A. Casado, S. Guerra, and J. Plácido, “Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion,” Journal of Physics B, vol. 41, no. 4, Article ID 045501, 2008. View at Publisher · View at Google Scholar
  11. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Physical Review Letters, vol. 76, no. 25, pp. 4656–4659, 1996. View at Publisher · View at Google Scholar
  12. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Physical Review A, vol. 58, no. 4, pp. R2623–R2630, 1998.
  13. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin, Germany, 2000.
  14. R. Loudon, “Fermion and boson beam-splitter statistics,” Physical Review A, vol. 58, no. 6, pp. 4904–4909, 1998.
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995.
  16. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes: I,” Physical Review, vol. 124, no. 6, pp. 1646–1654, 1961. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes: II,” Physical Review, vol. 129, no. 1, pp. 481–485, 1963. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Physical Review Letters, vol. 98, no. 18, Article ID 180502, 2007. View at Publisher · View at Google Scholar
  19. A. Casado, S. Guerra, and J. Plácido, “Análisis de estados hiperentrelazados con el formalismo de la fun-ción de wigner en el marco de heisenberg,” in Proceedings of the 32nd Reunión Bienal de la Real Sociedad Española de Física, pp. 519–520, Ciudad Real, Spain, 2009.