About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2011 (2011), Article ID 138358, 13 pages
http://dx.doi.org/10.1155/2011/138358
Research Article

Dissipative Effect and Tunneling Time

Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108, India

Received 15 March 2011; Revised 7 June 2011; Accepted 10 June 2011

Academic Editor: Yao-Zhong Zhang

Copyright © 2011 Samyadeb Bhattacharya and Sisir Roy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. O. Caldeira and A. J. Laggett, “Quantum tunneling in a dissipative system,” Annals of Physics, vol. 149, pp. 374–456, 1983. View at Publisher · View at Google Scholar
  2. R. Y. Chiao and A. M. Steinberg, “Tunneling times and superluminality,” in Progress in Optics, E. Wolf, Ed., vol. 37, p. 345, Elsevier, New York, NY, USA, 1997. View at Publisher · View at Google Scholar
  3. E. H. Hauge and J. A. Støveng, “Tunneling times: a critical review,” Reviews of Modern Physics, vol. 61, no. 4, pp. 917–936, 1989. View at Publisher · View at Google Scholar
  4. H. G. Winful, “Delay time and the hartman effect in quantum tunneling,” Physical Review Letters, vol. 91, no. 26, Article ID 260401, 4 pages, 2003.
  5. S. Brouard, R. Sala, and J. G. Muga, “Systematic approach to define and classify quantum transmission and reflection times,” Physical Review. A, vol. 49, no. 6, pp. 4312–4325, 1994. View at Publisher · View at Google Scholar
  6. G. W. Ford, J. T. Lewis, and R. F. O'Connell, “Dissipative quantum tunneling: quantum Langevin equation approach,” Physics Letters. A, vol. 128, no. 1-2, pp. 29–34, 1988. View at Publisher · View at Google Scholar · View at MathSciNet
  7. S. Roy and R. Llinás, “Relevance of quantum mechanics on some aspects of ion channel function,” Comptes Rendus Biologies, vol. 332, no. 6, pp. 517–522, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. G. W. Ford, J. T. Lewis, and R. F. O'Connell, “Quantum Langevin equation,” Physical Review. A, vol. 37, no. 11, pp. 4419–4428, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. G. W. Ford, J. T. Lewis, and R. F. O'Connell, “Quantum oscillator in a blackbody radiation field,” Physical Review Letters, vol. 55, no. 21, pp. 2273–2276, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  10. R. Landauer, “Barrier traversal time,” Nature, vol. 341, pp. 567–568, 1989. View at Publisher · View at Google Scholar
  11. M. B. Büttiker, “Larmor precession and the traversal time for tunneling,” Physical Review. B, vol. 27, no. 10, pp. 6178–6188, 1983.
  12. M. Büttiker and R. Landauer, “Traversal time for tunneling,” Physical Review Letters, vol. 49, no. 23, pp. 1739–1742, 1982. View at Publisher · View at Google Scholar
  13. R. Landauer and T. Mritin, “Barrier interaction time in tunneling,” Reviews of Modern Physics, vol. 66, no. 1, pp. 217–228, 1994. View at Publisher · View at Google Scholar
  14. C. R. Leavens and G. C. Aers, “Dwell time and phase times for transmission and reflection,” Physical Review. B, vol. 39, no. 2, pp. 1202–1206, 1989. View at Publisher · View at Google Scholar
  15. D. Sokolovski, “Path integrals and equations of motion for the traversal-time distributions in classical diffusion and quantum mechanics,” Physical Review. A, vol. 52, no. 1, pp. R5–R8, 1995. View at Publisher · View at Google Scholar
  16. B. Er-Juan and S. Qi-Qing, “Dwell time of particles in tunneling barriers of arbitrary shape,” Chinese Physics Letters, vol. 15, no. 12, p. 865, 1998. View at Publisher · View at Google Scholar
  17. Y. Zhou, J. H. Morais-Cabral, A. Kaufman, and R. Mackinnon, “Chemistry of ion coordination and hydration revealed by a K+ channel–fab complex at 2.0 Å resolution,” Nature, vol. 414, pp. 43–48, 2001. View at Publisher · View at Google Scholar · View at PubMed
  18. D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, et al., “The structure of the potassium channel: molecular basis of K+ conduction and selectivity,” Science, vol. 280, pp. 69–77, 1998.
  19. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, “Structured and viscous water in subnanometer gaps,” Physical Review. B, vol. 75, Article ID 115415, 6 pages, 2007.
  20. M. Galperin and A. Nitzan, “Inelastic effects in electron tunneling through water layers,” Journal of Chemical Physics, vol. 115, Article ID 2681, 14 pages, 2001.