About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2011 (2011), Article ID 259089, 45 pages
http://dx.doi.org/10.1155/2011/259089
Research Article

Dimensional Enhancement via Supersymmetry

1Department of Physics, State University of New York, Oneonta, NY 13820, USA
2Natural Science Division, Pepperdine University, Malibu, CA 90263, USA
3Department of Mathematics, Bard College, Annandale-on-Hudson, NY 12504-5000, USA

Received 3 March 2011; Revised 24 May 2011; Accepted 24 May 2011

Academic Editor: Yao-Zhong Zhang

Copyright © 2011 M. G. Faux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton, NJ, USA, 2nd edition, 1992. View at Zentralblatt MATH
  2. P. van Nieuwenhuizen, “Supergravity,” Physics Reports, vol. 68, no. 4, pp. 189–398, 1981. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. S. Weinberg, The Quantum Theory of Fields. Vol. III, Cambridge University Press, Cambridge, UK, 2000.
  4. M. F. Sohnius, “Introducing supersymmetry,” Physics Reports, vol. 128, no. 2-3, pp. 39–204, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  5. S. J. Gates, Jr., M. T. Grisaru, M. Roček, and W. Siegel, Superspace, vol. 58 of Frontiers in Physics, Benjamin/Cummings Publishing, Reading, Mass, USA, 1983.
  6. S. Weinberg, The Quantum Theory of Fields, vol. 1, Cambridge University Press, Cambridge, UK, 1995.
  7. S. Weinberg, The Quantum Theory of Fields. Vol. II, Cambridge University Press, Cambridge, Uk, 1996.
  8. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum field Theory, Addison-Wesley, Reading, Mass, USA, 1995.
  9. L. H. Ryder, Quantum Field Theory, Cambridge University Press, Cambridge, UK, 2nd edition, 1996.
  10. A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, USA, 2003.
  11. B. De Wit and J. Smith, Field Theory In Particle Physics, vol. 1, North-Holland, Amsterdam, The Netherlands, 1986.
  12. A. Salam and E. Sezgin, Supergravities in Diverse Dimensions. Vol. 1, 2, North-Holland, Amsterdam, The Netherlands, 1989.
  13. E. Cremmer and B. Julia, “The SO(8) supergravity,” Nuclear Physics, Section B, vol. 159, no. 1-2, pp. 141–212, 1979.
  14. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK, 1987.
  15. T. Kaluza, Zum Unittsproblem in der Physik, Sitzungsber, Preuss. Akad. Wiss., Berlin , Germany, 1921.
  16. O. Klein, “Quantentheorie und fnfdimensionale Relativittstheorie,” Zeitschrift fr Physik a Hadrons and Nuclei, vol. 37, no. 12, pp. 895–906, 1926.
  17. M. Faux and S. J. Gates, “Adinkras: a graphical technology for supersymmetric representation theory,” Physical Review D, vol. 71, no. 6, Article ID 065002, 21 pages, 2005. View at Publisher · View at Google Scholar
  18. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “On graph-theoretic identifications of Adinkras, supersymmetry representations and superfields,” International Journal of Modern Physics A, vol. 22, no. 5, pp. 869–930, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “Adinkras and the dynamics of superspace prepotentials,” Advanced Studies in Theoretical Physics, vol. 2, no. 1–4, pp. 113–164, 2008. View at Zentralblatt MATH
  20. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “Counter-examples to a putative classification of 1-dimensional, N-extended supermultiplets,” Advanced Studies in Theoretical Physics, vol. 2, no. 1–4, pp. 99–111, 2008.
  21. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “On the matter of N matter,” Physics Letters B, vol. 659, no. 1-2, pp. 441–446, 2008. View at Publisher · View at Google Scholar
  22. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “Super-Zeeman embedding models on N-supersymmetric world-lines,” Journal of Physics A, vol. 42, no. 6, Article ID 065402, p. 12, 2009. View at Publisher · View at Google Scholar
  23. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber, “Frames for supersymmetry,” International Journal of Modern Physics A, vol. 24, no. 14, pp. 2665–2676, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. C. F. Doran, M. Faux, S. J. Gates Jr., et al., “Topology types of Adinkras and the corresponding representations of N-extended supersymmetry,,” http://arxiv.org/abs/0806.0050.
  25. C. F. Doran, M. G. Faux, S. J. Gates Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, “Relating doubly-even error-correcting codes, graphs, and irreducible representations of N-extended supersymmetry,” http://arxiv.org/abs/0806.0051.
  26. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, The Netherlands, 1977.
  27. J. H. Conway, V. Pless, and N. J. A. Sloane, “The binary self-dual codes of length up to 32: a revised enumeration,” Journal of Combinatorial Theory. Series A, vol. 60, no. 2, pp. 183–195, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, UK, 2003.
  29. S. J. Gates Jr., W. D. Linch III, and J. Phillips, “When superspace is not enough,” http://arxiv.org/abs/hep-th/0211034.
  30. A. Pashnev and F. Toppan, “On the classification of N-extended supersymmetric quantum mechanical systems,” Journal of Mathematical Physics, vol. 42, no. 11, pp. 5257–5271, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  31. Z. Kuznetsova, M. Rojas, and F. Toppan, “Classification of irreps and invariants of the N-extended supersymmetric quantum mechanics,” Journal of High Energy Physics, no. 3, article 98, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  32. S. Bellucci, S. Krivonos, A. Marrani, and E. Orazi, ““Root” action for N supersymmetric mechanics theories,” Physical Review. D. Third Series, vol. 73, no. 2, Article ID 025011, 9 pages, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  33. M. Gonzales, Z. Kuznetsova, A. Nersessian, F. Toppan, and V. Yeghikyan, “Second Hopf map and supersymmetric mechanics with Yang monopole,” Physical Review D, vol. 80, Article ID 025022, 2009.
  34. F. Toppan, “Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians,” Progress of Physics, vol. 56, no. 4-5, pp. 516–520, 2008. View at Publisher · View at Google Scholar
  35. M. Gonzales, M. Rojas, and F. Toppan, “One-dimensional sigma-models with N = 5,6,7,8 off-shell supersymmetries,” International Journal of Modern Physics A, vol. 24, no. 23, pp. 4317–4326, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. Z. Kuznetsova and F. Toppan, “Refining the classification of the irreps of the 1D N-extended supersymmetry,” Modern Physics Letters A, vol. 23, no. 1, pp. 37–51, 2008. View at Publisher · View at Google Scholar
  37. M. Faux and D. Spector, “Duality and central charges in supersymmetric quantum mechanics,” Physical Review D, vol. 70, no. 8, Article ID 085014, 5 pages, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  38. M. Faux, D. Kagan, and D. Spector, “Central charges and extra dimensions in supersymmetric quantum mechanics,,” http://arxiv.org/abs/hep-th/0406152.
  39. S. J. Gates, Jr. and L. Rana, “A theory of spinning particles for large N-extended supersymmetry,” Physics Letters B, vol. 352, no. 1-2, pp. 50–58, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  40. S. J. Gates, Jr. and L. Rana, “A theory of spinning particles for large N-extended supersymmetry. II,” Physics Letters B, vol. 369, no. 3-4, pp. 262–268, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  41. G. D. Landweber, “Representation rings of Lie superalgebras,” K-Theory, vol. 36, no. 1-2, pp. 115–168, 2005. View at Zentralblatt MATH
  42. S. J. Gates Jr. and T. Húbsch, “On dimensional extension of supersymmetry: from worldlines to worldsheets,” http://arxiv.org/abs/1104.0722.