Table 1: Example 6.1: the maximum absolute errors (using proposed 𝑂 ( 𝑘 2 + 𝑘 2 2 + 4 ) -method) (with CPU time).

𝛼 = 1 0 , 𝛽 = 5 , 𝜂 = 0 . 5 , 𝛾 = 1 𝛼 = 2 0 , 𝛽 = 1 0 , 𝜂 = 1 , 𝛾 = 1 𝛼 = 4 0 , 𝛽 = 4 , 𝜂 = 1 0 , 𝛾 = 2 0 𝛼 = 5 0 , 𝛽 = 5 , 𝜂 = 0 . 2 5 , 𝛾 = 0 . 7 5 𝛼 = 1 0 , 𝛽 = 0 , 𝜂 = 5 , 𝛾 = 5

1 / 8 (CPU time) 0 . 5 8 0 0 E - 0 7
(0.2087)
0 . 1 7 8 4 E - 0 6
(0.2781)
0 . 4 0 5 1 E - 0 2
(0.2084)
0 . 1 1 1 9 E - 0 4
(0.2214)
0 . 6 7 8 1 E - 0 4
(0.2120)
0 . 9 2 3 4 E - 0 7
(0.2548)
0 . 6 8 7 3 E - 0 6
(0.3442)
0 . 6 6 7 7 E - 0 2
(0.2526)
0 . 8 8 2 0 E - 0 4
(0.2610)
0 . 8 8 7 3 E - 0 4
(0.2566)

1 / 1 6 (CPU time) 0 . 2 3 9 0 E - 0 8
(1.9938)
0 . 2 3 1 8 E - 0 8
(2.0041)
0 . 1 9 3 0 E - 0 3
(1.9580)
0 . 6 2 0 0 E - 0 6
(1.9844)
0 . 3 1 2 5 E - 0 5
(1.9636)
0 . 6 8 9 4 E - 0 8
(2.3690)
0 . 8 3 2 9 E - 0 8
(2.4715)
0 . 3 2 1 0 E - 0 3
(2.3427)
0 . 5 0 3 3 E - 0 5
(2.3677)
0 . 5 0 1 2 E - 0 5
(2.3525)

1 / 3 2 (CPU time) 0 . 1 4 5 0 E - 0 9
(30.9160)
0 . 1 1 3 2 E - 0 9
(31.1875)
0 . 1 1 7 8 E - 0 4
(30.8334)
0 . 3 8 9 9 E - 0 7
(31.2224)
0 . 1 9 1 7 E - 0 6
(31.2644)
0 . 3 6 3 4 E - 0 9
(38.8461)
0 . 4 4 1 8 E - 0 9
(39.1400)
0 . 2 1 4 4 E - 0 4
(38.3874)
0 . 2 4 8 2 E - 0 6
(39.3487)
0 . 2 8 9 8 E - 0 6
(39.9912)

1 / 6 4 (CPU time) 0 . 9 0 5 5 E - 1 1
(493.5212)
0 . 6 9 4 8 E - 1 1
(503.4469)
0 . 7 3 6 5 E - 0 6
(492.8654)
0 . 2 4 3 9 E - 0 8
(498.1166)
0 . 1 1 9 8 E - 0 7
(500.2034)
0 . 2 2 3 9 E - 1 0
(602.1290)
0 . 2 7 4 6 E - 1 0
(620.2021)
0 . 1 3 1 2 E - 0 5
(601.6682)
0 . 1 4 1 9 E - 0 7
(611.8769)
0 . 1 7 6 7 E - 0 7
(616.1248)

Result obtained by using the Method discussed in [13].