About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2011 (2011), Article ID 635790, 9 pages
http://dx.doi.org/10.1155/2011/635790
Research Article

Remarks on the Representation Theory of the Moyal Plane

1Instituto Universitario de Matemática Pura y Aplicad, Universidad Politécnica de Valencia, 46022 Valencia, Spain
2Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), 14476 Golm, Germany
3Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, 07738 Lindavista, D F, Mexico
4Cátedra Energesis de Tecnología Interdisciplinar, Universidad Católica de Valencia, C/Guillem de Castro 94, Valencia 46003, Spain

Received 1 February 2011; Revised 2 April 2011; Accepted 5 April 2011

Academic Editor: Frederik G. Scholtz

Copyright © 2011 J. M. Isidro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Szabo, “Quantum field theory on noncommutative spaces,” Physics Reports A, vol. 378, no. 4, pp. 207–299, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. R. J. Szabo, “Quantum gravity, field theory and signatures of noncommutative spacetime,” General Relativity and Gravitation, vol. 42, no. 1, pp. 1–29, 2009. View at Publisher · View at Google Scholar
  3. W. Thirring, Quantum Mathematical Physics, Springer, Berlin, Germany, 2nd edition, 2002.
  4. L. Gouba and F. G. Scholtz, “On the uniqueness of unitary representations of the non-commutative Heisenberg-Weyl algebra,” Canadian Journal of Physics, vol. 87, no. 9, pp. 995–997, 2009. View at Publisher · View at Google Scholar
  5. J. M. Isidro, P. Fernández de Córdoba, J. M. Rivera-Rebolledo, and J. L. G. Santander, “Remarks on the representation theory of the Moyal plane,” High Energy Physics—Theory. In preparation. View at Publisher · View at Google Scholar
  6. R. Banerjee, B. Chakraborty, S. Ghosh, P. Mukherjee, and S. Samanta, “Topics in noncommutative geometry inspired physics,” Foundations of Physics, vol. 39, no. 12, pp. 1297–1345, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. B. Chakraborty, S. Gangopadhyay, and A. Saha, “Seiberg-Witten map and Galilean symmetry violation in a noncommutative planar system,” Physical Review D, vol. 70, no. 10, p. 107707, 4, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  8. F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and A. G. Hazra, “Dual families of noncommutative quantum systems,” Physical Review D, vol. 71, no. 8, Article ID 085005, p. 11, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  9. B. Chakraborty, S. Gangopadhyay, A. G. Hazra, and F. G. Scholtz, “Twisted Galilean symmetry and the Pauli principle at low energies,” Journal of Physics A, vol. 39, no. 30, pp. 9557–9572, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. Gangopadhyay and F. G. Scholtz, “Path-integral action of a particle in the noncommutative plane,” Physical Review Letters, vol. 102, no. 24, Article ID 241602, p. 4, 2009. View at Publisher · View at Google Scholar
  11. F. G. Scholtz, L. Gouba, A. Hafver, and C. M. Rohwer, “Formulation, interpretation and application of non-commutative quantum mechanics,” Journal of Physics A, vol. 42, no. 17, Article ID 175303, p. 13, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. C. Duval and P. A. Horváthy, “The exotic Galilei group and the “Peierls substitution”,” Physics Letters B, vol. 479, no. 1–3, pp. 284–290, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. P. A. Horváthy, L. Martina, and P. C. Stichel, “Exotic Galilean symmetry and non-commutative mechanics,” SIGMA, vol. 6, p. 26, 2010.
  14. L. Landau and E. Lifshitz, Quantum Mechanics, vol. 3, Butterworth Heinemann, Oxford, UK, 2000.
  15. P. A. Horváthy and M. S. Plyushchay, “Anyon wave equations and the noncommutative plane,” Physics Letters B, vol. 595, no. 1–4, pp. 547–555, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  16. A. Bérard and H. Mohrbach, “Monopole and Berry phase in momentum space in noncommutative quantum mechanics,” Physical Review D, vol. 69, no. 12, Article ID 127701, p. 4, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  17. R. Carroll, On the Emergence Theme of Physics, World Scientific, Hackensack, NJ, USA, 2010. View at Publisher · View at Google Scholar
  18. H. -T. Elze, “The attractor and the quantum states,” International Journal of Quantum Information, vol. 7, no. 1, supplement, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. H. -T. Elze, “Symmetry aspects in emergent quantum mechanics,” Journal of Physics: Conference Series, vol. 171, no. 1, Article ID 012034, 2009. View at Publisher · View at Google Scholar
  20. H.-T. Elze, “Does quantum mechanics tell an atomistic spacetime?” Journal of Physics: Conference Series, vol. 174, Article ID 012009, 2009. View at Publisher · View at Google Scholar
  21. A. E. Faraggi and M. Matone, “The equivalence postulate of quantum mechanics,” International Journal of Modern Physics A, vol. 15, no. 13, pp. 1869–2017, 2000. View at Zentralblatt MATH