Table 1: Conditions on the value of the parameters 𝑔 and 𝜇 for the quasipolynomial solutions in the case of Δ 2 = 0 with different values of 𝑤 𝑎 2 and 𝑙 .

𝑛 𝑙 𝑤 𝑎 2 Conditions 𝐸 𝑤 𝑎 2 𝑛 , 𝑙 𝐸 𝑤 𝑎 2 𝑛 , 𝑙 ( 𝜇 , 𝑔 )

1 −1 1 / 2 𝜇 = 1 / 3 ( 3 1 5 𝐴 1 / 3 𝐴 1 / 3 ) , 𝐴 = 3 ( 3 6 9 6 1 ) 𝐸 1 / 2 1 , 1 = 𝑤 ( 3 / 2 + 2 / 3 𝐴 1 / 3 + 1 0 𝐴 1 / 3 )
𝑔 = 1 / 9 𝐴 2 / 3 ( 1 5 + 6 𝐴 1 / 3 + 𝐴 2 / 3 ) ( 1 5 + 9 𝐴 1 / 3 + 𝐴 2 / 3 )
1 𝜇 = 1 / 3 ( 5 1 9 𝐴 1 / 3 𝐴 1 / 3 ) , 𝐴 = 1 6 1 3 2 1 1 8 𝐸 1 1 , 1 = 𝑤 ( 1 7 / 6 + 2 / 3 𝐴 1 / 3 + 3 8 / 3 𝐴 1 / 3 )
𝑔 = 1 / 9 𝐴 2 / 3 ( 1 9 + 8 𝐴 1 / 3 + 𝐴 2 / 3 ) ( 1 9 + 1 1 𝐴 1 / 3 + 𝐴 2 / 3 )
3 / 2 𝜇 = 1 / 3 ( 7 2 5 𝐴 1 / 3 𝐴 1 / 3 ) , 𝐴 = 1 9 9 1 8 7 4 𝐸 3 / 2 1 , 1 = 𝑤 ( 2 5 / 6 + 2 / 3 𝐴 1 / 3 + 5 0 / 3 𝐴 1 / 3 )
𝑔 = 1 / 9 𝐴 2 / 3 ( 2 5 + 1 0 𝐴 1 / 3 + 𝐴 2 / 3 ) ( 2 5 + 1 3 𝐴 1 / 3 + 𝐴 2 / 3 )
2 𝜇 = 1 / 3 ( 9 3 3 𝐴 1 / 3 𝐴 1 / 3 ) , 𝐴 = 3 ( 7 2 1 1 9 1 ) 𝐸 2 1 , 1 = 𝑤 ( 1 1 / 2 + 2 / 3 𝐴 1 / 3 + 2 2 𝐴 1 / 3 )
𝑔 = 1 / 9 𝐴 2 / 3 ( 3 3 + 1 2 𝐴 1 / 3 + 𝐴 2 / 3 ) ( 3 3 + 1 5 𝐴 1 / 3 + 𝐴 2 / 3 )
0 1 / 2 𝜇 = 0 𝐸 1 / 2 1 , 0 = 3 / 2 𝑤
𝑔 = 2
𝜇 = 1 / 2 ( 7 + 1 7 ) 𝐸 1 / 2 1 , 0 = 1 / 2 ( 1 1 + 2 1 7 ) 𝑤
𝑔 = 2 9 + 5 1 7
𝜇 = 1 / 2 ( 7 1 7 ) 𝐸 1 / 2 1 , 0 = 1 / 2 ( 1 1 2 1 7 ) 𝑤
𝑔 = 2 9 5 1 7
1 𝜇 = 3 + 𝐵 𝐸 1 1 , 0 = ( 9 / 2 2 𝐵 ) 𝑤
𝑔 = ( 4 + 𝐵 ) ( 5 + 𝐵 )
𝐵 = 1 / 3 ( 𝐴 1 / 3 + 3 3 𝐴 1 / 3 ) , 𝐴 = 1 0 8 + 3 𝑖 2 6 9 7
𝜇 = 3 𝐵 , 𝐸 1 1 , 0 = ( 9 / 2 + 2 𝐵 ) 𝑤
𝑔 = ( 5 + 𝐵 ) ( 4 + 𝐵 )
𝐵 = ( ( 1 1 ( 1 + 𝑖 3 ) 𝐴 1 / 3 / 2 ) + ( ( 1 𝑖 3 ) 𝐴 1 / 3 / 6 ) ) , 𝐴 = 1 0 8 + 3 𝑖 2 6 9 7
𝜇 = 3 𝐵 , 𝐸 1 1 , 0 = ( 9 / 2 + 2 𝐵 ) 𝑤
𝑔 = ( 5 + 𝐵 ) ( 4 + 𝐵 )
𝐵 = ( 1 1 ( 1 𝑖 3 ) 𝐴 1 / 3 / 2 + ( ( 1 + 𝑖 3 ) 𝐴 1 / 3 / 6 ) ) , 𝐴 = 1 0 8 + 3 𝑖 2 6 9 7