About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 169642, 15 pages
http://dx.doi.org/10.1155/2012/169642
Research Article

Peristaltic Transport of a Jeffrey Fluid with Variable Viscosity through a Porous Medium in an Asymmetric Channel

1Department of Mathematics & Statistics, FBAS, IIU, Islamabad, Pakistan
2Department of Mechanical Engineering, University of California Riverside, USA

Received 12 December 2011; Accepted 16 February 2012

Academic Editor: Sanith Wijesinghe

Copyright © 2012 A. Afsar Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Y. Malik, A. Hussain, and S. Nadeem, “Flow of a Jeffrey-six constant fluid between coaxial cylinders with heat transfer,” Communications in Theoretical Physics, vol. 56, pp. 345–351, 2011. View at Publisher · View at Google Scholar
  2. W. Tan and T. Masuoka, “Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,” International Journal of Non-Linear Mechanics, vol. 40, no. 4, pp. 515–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Hameed and S. Nadeem, “Unsteady MHD flow of a non-Newtonian fluid on a porous plate,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 724–733, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  4. F. M. Mahomed and T. Hayat, “Note on an exact solution for the pipe flow of a third-grade fluid,” Acta Mechanica, vol. 190, no. 1–4, pp. 233–236, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. K. S. Mekheimer and Y. Abd elmaboud, “The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope,” Physics Letters A, vol. 372, no. 10, pp. 1657–1665, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. K. S. Mekheimer, “Effect of the induced magnetic field on peristaltic flow of a couple stress fluid,” Physics Letters A, vol. 372, no. 23, pp. 4271–4278, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. S. Srinivas and M. Kothandapani, “Peristaltic transport in an asymmetric channel with heat transfer—a note,” International Communications in Heat and Mass Transfer, vol. 35, no. 4, pp. 514–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kothandapani and S. Srinivas, “Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel,” International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 915–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Dehghan and F. Shakeri, “The numerical solution of the second painlevé equation,” Numerical Methods for Partial Differential Equations, vol. 25, no. 5, pp. 1238–1259, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. S. Nadeem and N. S. Akbar, “Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel,” Zeitschrift fur Naturforschung A, vol. 64, no. 11, pp. 713–722, 2009. View at Scopus
  11. S. Nadeem and N. S. Akbar, “Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of Adomian decomposition method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3844–3855, 2009. View at Publisher · View at Google Scholar
  12. A. Ebaid, “A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method,” Physics Letters A, vol. 372, no. 32, pp. 5321–5328, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. A. El Hakeem, A. El Naby, A. E. M. El Misiery, and I. I. El Shamy, “Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis,” Journal of Physics A, vol. 36, no. 31, pp. 8535–8547, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. S. Srinivas and R. Gayathri, “Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium,” Applied Mathematics and Computation, vol. 215, no. 1, pp. 185–196, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. S. Srinivas and M. Kothandapani, “The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls,” Applied Mathematics and Computation, vol. 213, no. 1, pp. 197–208, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. S. Nadeem, N. S. Akbar, and M. Y. Malik, “Numerical solutions of peristaltic flow of a newtonian fluid under the effects ofmagnetic field and heat transfer in a porous concentric tubes,” Zeitschrift fur Naturforschung A, vol. 65, no. 5, pp. 369–380, 2010. View at Scopus
  17. E. F. Elshehawey, N. T. Eldabe, E. M. Elghazy, and A. Ebaid, “Peristaltic transport in an asymmetric channel through a porous medium,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 140–150, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus