About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 368121, 11 pages
http://dx.doi.org/10.1155/2012/368121
Research Article

Numerical Simulation of Axion Quintessence

School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

Received 20 March 2012; Accepted 12 June 2012

Academic Editor: Emilio Elizalde

Copyright © 2012 Carl L. Gardner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Kallosh, A. Linde, S. Prokushkin, and M. Shmakova, “Supergravity, dark energy, and the fate of the universe,” Physical Review D, vol. 66, no. 12, Article ID 123503, 17 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Gardner, “Quintessence and the transition to an accelerating universe,” Nuclear Physics B, vol. 707, no. 1-2, pp. 278–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Komatsu, J. Dunkley, M. R. Nolta, et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, p. 330, 2009.
  4. C. L. Gardner, “Cosmological variation of the fine structure constant from an ultralight scalar field: the effects of mass,” Physical Review D, vol. 68, no. 4, Article ID 043513, 7 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. G. Riess, L. G. Sirolger, J. Tonry et al., “Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution,” Astrophysical Journal, vol. 607, no. 2, pp. 665–687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Frieman, C. T. Hill, A. Stebbins, and I. Waga, “Cosmology with ultralight pseudo Nambu-Goldstone bosons,” Physical Review Letters, vol. 75, no. 11, pp. 2077–2080, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Waga and J. A. Frieman, “New constraints from high redshift supernovae and lensing statistics upon scalar field cosmologies,” Physical Review D, vol. 62, no. 4, Article ID 043521, 5 pages, 2000. View at Scopus
  8. K. Choi, “String or M theory axion as a quintessence,” Physical Review D, vol. 62, no. 4, Article ID 043509, 13 pages, 2000. View at Scopus
  9. E. Silverstein and A. Westphal, “Monodromy in the CMB: gravity waves and string inflation,” Physical Review D, vol. 78, no. 10, Article ID 106003, 21 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Freese, C. Savage, and W. H. Kinney, “Natural inflation: status after WMAP three-year data,” International Journal of Modern Physics D, vol. 17, no. 1, pp. 2573–2586, 2008. View at Scopus
  11. S. Capozziello, M. De Laurentis, S. Nojiri, and S. D. Odintsov, “Classifying and avoiding singularities in the alternative gravity dark energy models,” Physical Review D, vol. 79, no. 12, Article ID 124007, 16 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Physical Review D, vol. 71, no. 6, Article ID 063004, 16 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Lehners, P. J. Steinhardt, and N. Turok, “The return of the phoenix universe,” International Journal of Modern Physics D, vol. 18, no. 14, pp. 2231–2235, 2009. View at Publisher · View at Google Scholar · View at Scopus