About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 375182, 15 pages
http://dx.doi.org/10.1155/2012/375182
Research Article

Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems

1Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada A1C 5S7
2Theoretical Division, Los Alamos National Laboratory, MS B213, Los Alamos, NM 87545, USA
3Dipartimento di Matematica e Fisica, and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, Via Musei 41, 25121 Brescia, Italy
4Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
5Department of Applied Physics, Polytechnic Institute of NYU, 6 MetroTech Center, Brooklyn, NY 11201, USA

Received 6 March 2012; Accepted 17 May 2012

Academic Editor: P. G. Kevrekidis

Copyright © 2012 M. Merkli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cramer, M. B. Plenio, and H. Wunderlich, “Measuring entanglement in condensed matter systems,” Physical Review Letters, vol. 106, no. 2, Article ID 020401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000. View at Zentralblatt MATH
  3. M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, “Quantum entanglement in photosynthetic light-harvesting complexes,” Nature Physics, vol. 6, no. 6, pp. 462–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Physical Review Letters, vol. 89, no. 27, pp. 2779011–2779014, 2002. View at Scopus
  5. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Physical Review Letters, vol. 93, no. 14, Article ID 140404, pp. 1–4, 2004. View at Publisher · View at Google Scholar
  6. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science, vol. 323, no. 5914, pp. 598–601, 2009. View at Publisher · View at Google Scholar
  7. T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Optics Communications, vol. 264, no. 2, pp. 393–397, 2006. View at Publisher · View at Google Scholar
  8. B. Bellomo, R. Lo Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Physical Review Letters, vol. 99, no. 16, Article ID 160502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Huang and S. Y. Zhu, “Sudden death time of two-qubit entanglement in a noisy environment,” Optics Communications, vol. 281, no. 8, pp. 2156–2159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Paz and A. J. Roncaglia, “Dynamics of the entanglement between two oscillators in the same environment,” Physical Review Letters, vol. 100, no. 22, Article ID 220401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Merkli, G. P. Berman, F. Borgonovi, and K. Gebresellasie, “Evolution of entanglement of two qubits interacting through local and collective environments,” Quantum Information & Computation, vol. 11, no. 5-6, pp. 390–419, 2011.
  12. M. Merkli, G. P. Berman, and A. Redondo, “Application of resonance perturbation theory to dynamics of magnetization in spin systems interacting with local and collective bosonic reservoirs,” Journal of Physics A, vol. 44, no. 30, Article ID 305306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Merkli, I. M. Sigal, and G. P. Berman, “Resonance theory of decoherence and thermalization,” Annals of Physics, vol. 323, no. 2, pp. 373–412, 2008. View at Publisher · View at Google Scholar
  14. M. Merkli, G. P. Berman, and I. M. Sigal, “Dynamics of collective decoherence and thermalization,” Annals of Physics, vol. 323, no. 12, pp. 3091–3112, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. M. Merkli, I. M. Sigal, and G. P. Berman, “Decoherence and thermalization,” Physical Review Letters, vol. 98, no. 13, Article ID 130401, 2007. View at Publisher · View at Google Scholar
  16. F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Physics, vol. 5, no. 9, pp. 633–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum Markov processes,” Physical Review A, vol. 78, no. 4, Article ID 042307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nature Physics, vol. 4, no. 11, pp. 878–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Martinis, “Superconducting phase qubits,” Quantum Information Processing, vol. 8, no. 2-3, pp. 81–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Lee, Y. C. Cheng, and G. R. Fleming, “Coherence dynamics in photosynthesis: protein protection of excitonic coherence,” Science, vol. 316, no. 5830, pp. 1462–1465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Panitchayangkoon, D. Hayes, K. A. Fransted et al., “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 12766–12770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463, no. 7281, pp. 644–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. L. Celardo, F. Borgonovi, M. Merkli, V. I. Tsifrinovich, and G. P. Berman, “Superradiance transition in photosynthetic light-harvesting complexes,” Submitted, http://arxiv.org/abs/1111.5443.