About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 702681, 21 pages
http://dx.doi.org/10.1155/2012/702681
Research Article

The Effects of MHD Flow and Heat Transfer for the UCM Fluid over a Stretching Surface in Presence of Thermal Radiation

1Department of Mathematics, Gulbarga University, Karnataka, Gulbarga 585 106, India
2Department of Mathematics, Walchand Institute of Technology, Maharashtra, Solapur 413006, India
3Department of Mathematics, Swamy Vivekananda Institute of Technology, Andra Pradesh, Secunderabad 500 003, India

Received 10 March 2012; Revised 2 August 2012; Accepted 4 August 2012

Academic Editor: Ricardo Weder

Copyright © 2012 M. Subhas Abel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol. 1, John Wiley & Sons, New York, NY, USA, 1987.
  2. T. Sarpakaya, “Flow of non-Newtonian fluids in a magnetic field,” AIChE Journal, vol. 7, pp. 324–328, 1961. View at Publisher · View at Google Scholar
  3. L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. Grubka and K. M. Bobba, “Heat Transfer characteristics of a continuous stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248–250, 1985. View at Scopus
  5. B. K. Dutta and A. S. Gupta, “Cooling of a stretching sheet in a viscous flow,” Industrial and Engineering Chemistry Research, vol. 26, no. 2, pp. 333–336, 1987. View at Scopus
  6. D. R. Jeng, T. C. A. Chang, and K. J. Dewitt, “Momentum and heat transfer on a continuous surface,” ASME Journal of Heat Transfer, vol. 108, pp. 532–539, 1986. View at Publisher · View at Google Scholar
  7. C. K. Chen and M. I. Char, “Heat transfer of a continuous, stretching surface with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 568–580, 1988. View at Scopus
  8. A. Chakrabarti and A. S. Gupta, “Hydromagnetic flow and heat transfer over a stretching sheet,” Quarterly of Applied Mathematics, vol. 37, no. 1, pp. 73–78, 1979. View at Scopus
  9. H. I. Andersson, K. H. Bech, and B. S. Dandapat, “Magnetohydrodynamic flow of a power-law fluid over a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 27, no. 6, pp. 929–936, 1992. View at Scopus
  10. N. Afzal, “Heat transfer from a stretching surface,” International Journal of Heat and Mass Transfer, vol. 36, no. 4, pp. 1128–1131, 1993. View at Scopus
  11. K. V. Prasad, S. Abel, and P. S. Datti, “Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 38, no. 5, pp. 651–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Abel, P. G. Siddheshwar, and M. M. Nandeppanavar, “Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source,” International Journal of Heat and Mass Transfer, vol. 50, no. 5-6, pp. 960–966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Abel and N. Mahesha, “Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation,” Applied Mathematical Modelling, vol. 32, no. 10, pp. 1965–1983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Agassant, P. Avens, and J. Sergent PJ Carreau, Polymer Processing: Principles and Modelling, Hanser Publishers, Munich, Germany, 1991.
  15. K. R. Rajgopal, T. Y. Na, and A. S. Gupta, “Flow of a viscoelastic fluid over a sretching sheet,” Rheologica Acta, vol. 23, pp. 213–215, 1984. View at Publisher · View at Google Scholar
  16. H. I. Andersson, “MHD flow of a viscoelastic fluid past a stretching surface,” Acta Mechanica, vol. 95, no. 1–4, pp. 227–230, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. D. N. Schulz and J. E. Glass, Eds., Polymers as Rheology Modifiers, ACS symposium Series, 462, American Chemical Society, Washington, DC, USA, 1991.
  18. A. Raptis and C. Perdikis, “Viscoelastic flow by the presence of radiation,” Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 78, no. 4, pp. 277–279, 1998. View at Scopus
  19. A. Raptis, “Radiation and viscoelastic flow,” International Communications in Heat and Mass Transfer, vol. 26, no. 6, pp. 889–895, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. I. C. Liu, “Flow and heat transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field,” International Journal of Non-Linear Mechanics, vol. 40, no. 4, pp. 465–474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. I. C. Liu, “A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet,” International Communications in Heat and Mass Transfer, vol. 32, no. 8, pp. 1075–1084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. G. Siddheshwar and U. S. Mahabaleswar, “Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 40, no. 6, pp. 807–820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Hayat, Z. Abbas, M. Sajid, and S. Asghar, “The influence of thermal radiation on MHD flow of a second grade fluid,” International Journal of Heat and Mass Transfer, vol. 50, no. 5-6, pp. 931–941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Hayat, Z. Abbas, and M. Sajid, “Series solution for the upper-convected Maxwell fluid over a porous stretching plate,” Physics Letters, Section A, vol. 358, no. 5-6, pp. 396–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Sadeghy, A. H. Najafi, and M. Saffaripour, “Sakiadis flow of an upper-convected Maxwell fluid,” International Journal of Non-Linear Mechanics, vol. 40, no. 9, pp. 1220–1228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Alizadeh-Pahlavan, V. Aliakbar, F. Vakili-Farahani, and K. Sadeghy, “MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 473–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Renardy, “High Weissenberg number boundary layers for the upper converted Maxwell fluid,” Journal of Non-Newtonian Fluid Mechanics, vol. 68, no. 1, pp. 125–132, 1997. View at Scopus
  28. I. J. Rao and K. R. Rajagopal, “On a new interpretation of the classical Maxwell model,” Mechanics Research Communications, vol. 34, no. 7-8, pp. 509–514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Sadeghy, H. Hajibeygi, and S. M. Taghavi, “Stagnation-point flow of upper-convected Maxwell fluids,” International Journal of Non-Linear Mechanics, vol. 41, no. 10, pp. 1242–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Alizadeh-Pahlavan and K. Sadeghy, “On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1355–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Aliakbar, A. Alizadeh-Pahlavan, and K. Sadeghy, “The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 779–794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. Rajagopal, “Boundary Layers in non-Newtonian fluids,” M. D. P. Montieivo Marques and J. F. Rodrigues, Eds.
  33. S. D. Conte and C. de Boor, Elementary Numerical Analysis, McGraw-Hill, New York, NY, USA, 1972.
  34. T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, NY, USA, 1984.