About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 731602, 16 pages
http://dx.doi.org/10.1155/2012/731602
Research Article

On the Existence and Robustness of Steady Position-Momentum Correlations for Time-Dependent Quadratic Systems

Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitá del Salento and INFN, Sezione di Lecce, 73100 Lecce, Italy

Received 17 October 2011; Revised 10 January 2012; Accepted 13 February 2012

Academic Editor: Ricardo Weder

Copyright © 2012 M. Gianfreda and G. Landolfi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Colegrave and M. Sebawe Abdalla, “Harmonic oscillator with exponentially decaying mass,” Journal of Physics A, vol. 14, no. 9, pp. 2269–2280, 1981. View at Publisher · View at Google Scholar · View at Scopus
  2. C. K. Law, “Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium,” Physical Review A, vol. 49, no. 1, pp. 433–437, 1994. View at Publisher · View at Google Scholar
  3. I. A. Pedrosa, “Quantum electromagnetic waves in nonstationary linear media,” Physical Review A, vol. 83, no. 3, Article ID 032108, 2011. View at Publisher · View at Google Scholar
  4. I. A. Pedrosa, C. Furtado, and A. Rosas, “Light propagation: from dielectrics to curved spacetimes,” EPL, vol. 94, no. 3, Article ID 30002, 2011. View at Publisher · View at Google Scholar
  5. D. F. Walls and G. J. Milburn, Quantum optics, Springer-Verlag, Berlin, Second edition, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. N. C. Menicucci and G. J. Milburn, “Single trapped ion as a time-dependent harmonic oscillator,” Physical Review A, vol. 76, no. 5, Article ID 052105, 2007. View at Publisher · View at Google Scholar
  7. L. P. Grishchuk and Y. V. Sidorov, “Squeezed quantum states of relic gravitons and primordial density fluctuations,” Physical Review D, vol. 42, no. 10, pp. 3413–3421, 1990. View at Publisher · View at Google Scholar
  8. A. Geralico, G. Landolfi, G. Ruggeri, and G. Soliani, “Novel approach to the study of quantum effects in the early universe,” Physical Review D, vol. 69, no. 4, Article ID 043504, 2004. View at Publisher · View at Google Scholar
  9. G. Landolfi and G. Soliani, “Trans-Planckian effects in nonlinear-dispersion cosmologies,” Physics Letters B, vol. 588, no. 1-2, pp. 1–6, 2004. View at Publisher · View at Google Scholar
  10. A. M. M. De Carvalho, C. Furtado, and I. A. Pedrosa, “Scalar fields and exact invariants in a Friedmann-Robertson-Walker spacetime,” Physical Review D, vol. 70, no. 12, Article ID 123523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. A. Pedrosa, C. Furtado, and A. Rosas, “Exact linear invariants and quantum effects in the early universe,” Physics Letters B, vol. 651, no. 5-6, pp. 384–387, 2007. View at Publisher · View at Google Scholar
  12. C. E. F. Lopes, I. A. Pedrosa, C. Furtado, and A. M. d. M. Carvalho, “Gaussian wave packet states of scalar fields in a universe of de Sitter,” Journal of Mathematical Physics, vol. 50, no. 8, Article ID 083511, 2009. View at Publisher · View at Google Scholar
  13. K. Bakke, I. A. Pedrosa, and C. Furtado, “Geometric phases and squeezed quantum states of relic gravitons,” Journal of Mathematical Physics, vol. 50, no. 11, Article ID 113521, 2009. View at Publisher · View at Google Scholar
  14. I. A. Pedrosa, K. Bakke, and C. Furtado, “Gaussian wave packet states of relic gravitons,” Physics Letters B, vol. 671, no. 2, pp. 314–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Qin and R. C. Davidson, “Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency,” Physical Review Special Topics—Accelerators and Beams, vol. 9, no. 5, Article ID 054001, 2006. View at Publisher · View at Google Scholar
  16. J. Struckmeier, “Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems,” Journal of Physics A, vol. 38, no. 6, pp. 1257–1278, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. J. Struckmeier and C. Riedel, “Canonical transformations and exact invariants for time-dependent Hamiltonian systems,” Annalen der Physik, vol. 11, no. 1, pp. 15–38, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” Journal of Mathematical Physics, vol. 10, no. 8, pp. 1458–1473, 1969. View at Scopus
  19. V. V. Dodonov and V. I. Man'Ko, “Coherent states and the resonance of a quantum damped oscillator,” Physical Review A, vol. 20, no. 2, pp. 550–560, 1979. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-I. Um, K.-H. Yeon, and T. F. George, “The quantum damped harmonic oscillator,” Physics Reports, vol. 362, no. 2-3, pp. 63–192, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. G. Landolfi, “Weyl-ordered series form for the angle variable of the time-dependent oscillator,” Journal of Physics A, vol. 41, no. 18, Article ID 185302, 2008. View at Publisher · View at Google Scholar
  22. V. V. Dodonov and V. I. Man'ko, “Invariants and the Evolution of Non-stationary Quantum Systems,” in Proceedings of Lebedev Physics Institute, M. A. Markov, Ed., vol. 183, Nova Science, Commack, NY, USA, 1989.
  23. F. Haas, “The damped Pinney equation and its applications to dissipative quantum mechanics,” Physica Scripta, vol. 81, no. 2, Article ID 025004, 2010. View at Publisher · View at Google Scholar
  24. M. Razavy, Classical and Quantum Dissipative Systems, Imperial College Press, London, UK, 2005.
  25. E. Kanai, “On the quantization of the dissipative systems,” Progress of Theoretical Physics, vol. 3, no. 4, pp. 440–442, 1948.
  26. P. Caldirola, “Quantum theory of nonconservative systems,” Nuovo Cimento. B. Serie 11, vol. 77, no. 2, pp. 241–262, 1983. View at Publisher · View at Google Scholar
  27. G. Profilo and G. Soliana, “Group-theoretical approach to the classical and quantum oscillator with time-dependent mass and frequency,” Physical Review A, vol. 44, no. 3, pp. 2057–2065, 1991. View at Publisher · View at Google Scholar
  28. S. K. Suslov, “Dynamical invariants for variable quadratic Hamiltonians,” Physica Scripta, vol. 81, no. 5, Article ID 055006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Landolfi, G. Ruggeri, and G. Soliani, “A note on the loss of coherence in wave packets squeezed systems,” International Journal of Quantum Information, vol. 2, no. 4, pp. 529–540, 2004.
  30. I. A. Pedrosa, “Comment on Coherent states for the time-dependent harmonic oscillator,” Physical Review D, vol. 36, no. 4, pp. 1279–1280, 1987. View at Publisher · View at Google Scholar · View at Scopus
  31. H. P. Yuen, “Two-photon coherent states of the radiation field,” Physical Review A, vol. 13, no. 6, pp. 2226–2243, 1976. View at Publisher · View at Google Scholar
  32. D. A. Morales, “Correspondence between Berry's phase and Lewis's phase for quadratic Hamiltonians,” Journal of Physics A, vol. 21, no. 18, pp. L889–L892, 1988. View at Publisher · View at Google Scholar