About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2012 (2012), Article ID 857493, 29 pages
http://dx.doi.org/10.1155/2012/857493
Research Article

A Review of Geometric Optimal Control for Quantum Systems in Nuclear Magnetic Resonance

1Institut de Mathématiques de Bourgogne, UMR CNRS 5584, BP 47870, 21078 Dijon, France
2Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
3Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Université de Bourgogne, 9 Avenue A. Savary, BP 47 870, 21078 Dijon Cedex, France

Received 30 June 2011; Revised 29 September 2011; Accepted 5 October 2011

Academic Editor: Ricardo Weder

Copyright © 2012 Bernard Bonnard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Ernst, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, International Series of Monographs on Chemistry, Oxford University Press, Oxford, UK, 1990.
  2. M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley & Sons, New York, NY, USA, 2008.
  3. V. Jurdjevic, Geometric Control Theory, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, Cambridge, UK, 1997.
  4. L. Pontryagin, V. Boltianski, R. Gamkrélidzé, and E. Michtchenko, Théorie Mathématique des Processus Optimaux, Mir, Moscow, Russia, 1974.
  5. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, NY, USA, 1967.
  6. M. Fliess, “Fonctionnelles causales non linéaires et indéterminées non commutatives,” Bulletin de la Société Mathématique de France, vol. 109, no. 1, pp. 3–40, 1981.
  7. M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny, “Singular extremals for the time-optimal control of dissipative spin 1/2 particles,” Physical Review Letters, vol. 104, no. 8, Article ID 083001, 4 pages, 2010. View at Publisher · View at Google Scholar
  8. A. A. Agrachev and L. Y. Sachkov, “Control theory from the geometric viewpoint,” in Control Theory and Optimization. II, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer, Berlin, Germany, 2004.
  9. B. Bonnard and I. Kupka, “Théorie des singularités de l'application entré/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,” Forum Mathematicum, vol. 5, no. 2, pp. 111–159, 1993.
  10. A. A. Agrachev and R. V. Gamkrelidze, “Feedback-invariant optimal control theory and differential geometry—I: regular extremals,” Journal of Dynamical and Control Systems, vol. 3, no. 3, pp. 343–389, 1997.
  11. C. Westbrook and C. Roth, MRI in Practice, Blackwell, Oxford, UK, 3rd edition, 2005.
  12. A. J. Krener, “The high order maximal principle and its application to singular extremals,” SIAM Journal on Control and Optimization, vol. 15, no. 2, pp. 256–293, 1977.
  13. B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, vol. 40 of Mathématiques and Applications, Springer, Berlin, Germany, 2003.
  14. B. Bonnard, J. B. Caillau, and E. Trélat, “Second order optimality conditions in the smooth case and applications in optimal control,” ESAIM—Control, Optimisation and Calculus of Variations, vol. 13, no. 2, pp. 207–236, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  15. U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2D manifolds, vol. 43 of Mathematiques and Applications, Springer, Berlin, Germany, 2004.
  16. G. M. Bydder, J. V. Hajnal, and I. R. Young, “MRI: use of the inversion recovery pulse sequence,” Clinical Radiology, vol. 53, no. 3, pp. 159–176, 1998. View at Publisher · View at Google Scholar
  17. S. L. Patt and B. D. Sykes, “Water eliminated fourier transform NMR spectroscopy,” The Journal of Chemical Physics, vol. 56, no. 6, pp. 3182–3184, 1972.
  18. I. Kupka, “Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case,” Transactions of the American Mathematical Society, vol. 299, no. 1, pp. 225–243, 1987.
  19. H. J. Sussmann, “The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case,” SIAM Journal on Control and Optimization, vol. 25, no. 4, pp. 868–904, 1987.
  20. H. Schättler, “Regularity properties of optimal trajectories: recently developed techniques,” in Nonlinear Controllability and Optimal Control, vol. 133 of Monographs and Textbooks in Pure and Applied Mathematics, New York, NY, USA, 1990.
  21. B. Bonnard, M. Chyba, and D. Sugny, “Time-minimal control of dissipative two-level quantum systems: the generic case,” IEEE Transactions on Automatic Control, vol. 54, no. 11, p. 2598, 2009. View at Publisher · View at Google Scholar
  22. E. Assémat, M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. Sugny, “Simultaneous time-optimal control of the inversion of two spin-1/2 particles,” Physical Review A, vol. 82, Article ID 013415, 6 pages, 2010. View at Publisher · View at Google Scholar
  23. B. Bonnard, “Feedback equivalence for nonlinear systems and the time optimal control problem,” SIAM Journal on Control and Optimization, vol. 29, no. 6, pp. 1300–1321, 1991.
  24. A. O. Remizov, “Implicit differential equations and vector fields with non-isolated singular points,” Sbornik Mathematics, vol. 193, no. 11-12, pp. 1671–1690, 2002.
  25. J. Sotomayor and M. Zhitomirskii, “Impasse singularities of differential systems of the form A(x)x˙=F(x),” Journal of Differential Equations, vol. 169, no. 2, pp. 567–587, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  26. H. Moyer, “Sufficient conditions for a strong minimum in singular control problems,” SIAM Journal on Control and Optimization, vol. 11, no. 4, pp. 620–636, 1973. View at Publisher · View at Google Scholar
  27. P. V. Kokotovic, “Applications of singular perturbation techniques to control problems,” SIAM Review, vol. 26, no. 4, pp. 501–550, 1984.
  28. T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications,” Reviews in Mathematical Physics, vol. 22, no. 6, pp. 597–667, 2010. View at Publisher · View at Google Scholar
  29. http://apo.enseeiht.fr/hampath/.