About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2013 (2013), Article ID 516919, 10 pages
http://dx.doi.org/10.1155/2013/516919
Research Article

External Fractional-Order Gradient Vector Perona-Malik Diffusion for Sinogram Restoration of Low-Dosed X-Ray Computed Tomography

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Received 11 September 2013; Accepted 20 September 2013

Academic Editor: Ming Li

Copyright © 2013 Shaoxiang Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. T. F. Chan, S. Esedoglu, and F. E. Park, “A fourth order dual method for staircase reduction in texture extraction and image restoration problems,” http://basilo.kaist.ac.kr/preprint/uclam/cam05-28.pdf.
  5. T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 22, no. 2, pp. 503–516, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. Bai and X.-C. Feng, “Fractional-order anisotropic diffusion for image denoising,” IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2492–2502, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  7. J. Zhang and Z. Wei, “A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2516–2528, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. M. Janev, S. Pilipović, T. Atanacković, R. Obradović, and N. Ralević, “Fully fractional anisotropic diffusion for image denoising,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 729–741, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. S. Hu, Z. Liao, and W. Chen, “Sinogram restoration for low-dosed X-ray computed tomography using fractional-order Perona-Malik diffusion,” Mathematical Problems in Engineering, vol. 2012, Article ID 391050, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Li, “Approximating ideal filters by systems of fractional order,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 365054, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. Li, S. C. Lim, C. Cattani, and M. Scalia, “Characteristic roots of a class of fractional oscillators,” Advances in High Energy Physics, vol. 2013, Article ID 853925, 2013. View at Publisher · View at Google Scholar
  12. M. Li and W. Zhao, “On 1/f noise,” Mathematical Problems in Engineering, vol. 2012, Article ID 673648, 23 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. M. Li and W. Zhao, “Solving Abel's type integral equation with Mikusinski's operator of fractional order,” Advances in Mathematical Physics, vol. 2013, Article ID 806984, 4 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” The New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Yu, “Radiation dose reduction in computed tomography: techniques and future perspective,” Imaging in Medicine, vol. 1, no. 1, pp. 65–84, 2009. View at Publisher · View at Google Scholar
  16. J. Weidemann, G. Stamm, M. Galanski, and M. Keberle, “Comparison of the image quality of various fixed and dose modulated protocols for soft tissue neck CT on a GE Lightspeed scanner,” European Journal of Radiology, vol. 69, no. 3, pp. 473–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. K. Kalra, M. M. Maher, M. A. Blake et al., “Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters,” Radiology, vol. 232, no. 3, pp. 791–797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. R. Giraldo, Z. S. Kelm, L. S. Guimaraes et al., “Comparative study of two image space noise reduction methods for computed tomography: bilateral filter and nonlocal means,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 3529–3532, 2009. View at Scopus
  19. A. Manduca, L. Yu, J. D. Trzasko et al., “Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT,” Medical Physics, vol. 36, no. 11, pp. 4911–4919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Mail, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “The influence of bowtie filtration on cone-beam CT image quality,” Medical Physics, vol. 36, no. 1, pp. 22–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Liao, S. Hu, and W. Chen, “Determining neighborhoods of image pixels automatically for adaptive image denoising using nonlinear time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 914564, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. H. Lu, I.-T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose CT projections and noise treatment by scale transformations,” in Proceedings of IEEE Nuclear Science Symposium Conference Record, vol. 3, pp. 1662–1666, November 2001. View at Scopus
  23. J. Xu and B. M. W. Tsui, “Electronic noise modeling in statistical iterative reconstruction,” IEEE Transactions on Image Processing, vol. 18, no. 6, pp. 1228–1238, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  24. I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 89–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Wang, H. Lu, J. Wen, and Z. Liang, “Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1022–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 10, pp. 1272–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Chen, W. Chen, X. Yin et al., “Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods,” European Journal of Radiology, vol. 80, no. 2, pp. e42–e49, 2011. View at Publisher · View at Google Scholar · View at Scopus