About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2013 (2013), Article ID 630196, 4 pages
http://dx.doi.org/10.1155/2013/630196
Research Article

Neutron Star Interiors and Topology Change

Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109, USA

Received 1 January 2013; Revised 8 March 2013; Accepted 11 March 2013

Academic Editor: Emilio Elizalde

Copyright © 2013 Peter K. F. Kuhfittig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Morris and K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity,” American Journal of Physics, vol. 56, no. 5, pp. 395–412, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. P. K. F. Kuhfittig, “Could some black holes have evolved from wormholes?” Scholarly Research Exchange, vol. 2008, Article ID 296158, 5 pages, 2008. View at Publisher · View at Google Scholar
  3. A. DeBenedictis, R. Garattini, and F. S. N. Lobo, “Phantom stars and topology change,” Physical Review D, vol. 78, no. 10, Article ID 104003, 14 pages, 2008. View at Publisher · View at Google Scholar
  4. N. Itoh, “Hydrostatic equilibrium of hypothetical quark stars,” Progress of Theoretical Physics, vol. 44, no. 1, pp. 291–292, 1970. View at Publisher · View at Google Scholar
  5. U. Heinz and M. Jacob, “Evidence for a new state of matter: an assessment of the results from the CERN lead beam programme,” http://arxiv.org/abs/nucl-th/0002042.
  6. T. Schaefer, “Quark matter,” http://arxiv.org/abs/hep-ph/0304281.
  7. B. Müller, “Quark matter 2005—theoretical summary,” http://arxiv.org/abs/nucl-th/0508062.
  8. M. A. Perez-Garcia, J. Silk, and J. R. Stone, “Dark matter, neutron stars, and strange quark matter,” Physical Review Letters, vol. 105, no. 14, Article ID 141101, 4 pages, 2010. View at Publisher · View at Google Scholar
  9. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New extended model of hadrons,” Physical Review D, vol. 9, no. 12, pp. 3471–3495, 1974. View at Publisher · View at Google Scholar · View at MathSciNet
  10. A. Bhattacharyya, J. E. Alam, S. Sarkar et al., “Cosmological QCD phase transition and dark matter,” Nuclear Physics A, vol. 661, no. 1–4, pp. 629–632, 1999. View at Scopus
  11. F. Rahaman, M. Kalam, and K. A. Rahman, “Wormhole geometry from real feasible matter sources,” International Journal of Theoretical Physics, vol. 48, no. 2, pp. 471–475, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, “Mixed neutron-star-plus-wormhole systems: equilibrium configurations,” Physical Review D, vol. 85, no. 12, Article ID 124028, 14 pages, 2012. View at Publisher · View at Google Scholar
  13. R. Rahaman, P. K. F. Kuhfittig, R. Amin, G. Mandal, S. Ray, and N. Islam, “Quark matter as dark matter in modeling galactic halo,” Physics Letters B, vol. 714, no. 2-5, pp. 131–135, 2012. View at Publisher · View at Google Scholar
  14. F. Rahaman, R. Maulick, R. Sharma, S. Ray, and I. Karar, “Strange stars in Krori-Barua space-time,” http://arxiv.org/abs/1108.6125.
  15. F. Weber, R. Negreiros, and P. Rosenfield, “Neutron star interiors and the equation of state of superdense matter,” http://arxiv.org/abs/0705.2708.
  16. M. Visser, “Traversable wormholes from surgically modified Schwarzschild spacetimes,” Nuclear Physics B, vol. 328, no. 1, pp. 203–212, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  17. D. Pavón and B. Wang, “Le Châtelier-Braun principle in cosmological physics,” General Relativity and Gravitation, vol. 41, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet