About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2013 (2013), Article ID 950289, 8 pages
http://dx.doi.org/10.1155/2013/950289
Research Article

Extraction of Affine Invariant Features Using Fractal

1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
2School of Information Science and Technology, East China Normal University, No. 500, Dong-Chuan Road, Shanghai 200241, China

Received 19 March 2013; Accepted 29 April 2013

Academic Editor: Chen Wensheng

Copyright © 2013 Jianwei Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. M. Tieng and W. W. Boles, “Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 8, pp. 846–857, 1997. View at Scopus
  2. M. R. Daliri and V. Torre, “Robust symbolic representation for shape recognition and retrieval,” Pattern Recognition, vol. 41, no. 5, pp. 1799–1815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. L. E. Ekombo, N. Ennahnahi, M. Oumsis, and M. Meknassi, “Applicationof affine invariant fourier descriptor to shape based image retrieval,” International Journal of Computer Science and Network Security, vol. 9, no. 7, pp. 240–247, 2009.
  4. X. Gao, C. Deng, X. Li, and D. Tao, “Geometric distortion insensitive image watermarking in affine covariant regions,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 40, no. 3, pp. 278–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. I. Khalil and M. M. Bayoumi, “A dyadic wavelet affine invariant function for 2D shape recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1152–1164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Khalil and M. M. Bayoumi, “Affine invariants for object recognition using the wavelet transform,” Pattern Recognition Letters, vol. 23, no. 1–3, pp. 57–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Liu, Z. Lin, and Y. Yu, “Radon representation-based feature descriptor for texture classification,” IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 921–928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Matungka, Y. F. Zheng, and R. L. Ewing, “Image registration using adaptive polar transform,” IEEE Transactions on Image Processing, vol. 18, no. 10, pp. 2340–2354, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  9. Y. Wang and E. K. Teoh, “2D affine-invariant contour matching using B-spline model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1853–1858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Mai, C. Q. Chang, and Y. S. Hung, “A subspace approach for matching 2D shapes under affine distortions,” Pattern Recognition, vol. 44, no. 2, pp. 210–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gong, H. Li, and W. Cao, “Moment invariants to affine transformation of colours,” Pattern Recognition Letters, vol. 34, no. 11, pp. 1240–1251, 2013. View at Publisher · View at Google Scholar
  12. X. Song, D. Muselet, and A. Tremeau, “Affine transforms between image space and color space for invariant local descriptors,” Pattern Recognition, vol. 46, no. 8, pp. 2376–2389, 2013. View at Publisher · View at Google Scholar
  13. D. Zhang and G. Lu, “Review of shape representation and description techniques,” Pattern Recognition, vol. 37, no. 1, pp. 1–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Rahtu, A multiscale framework for affine invariant pattern recognitionand registration [Ph.D. thesis], University of OULU, Oulu, Finland, 2007.
  15. R. Veltkamp and M. Hagedoorn, “State-of the art in shape matching,” Tech. Rep. UU-CS-1999, 1999.
  16. I. Weiss, “Geometric invariants and object recognition,” International Journal of Computer Vision, vol. 10, no. 3, pp. 207–231, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Y. Tang, Y. Tao, and E. C. M. Lam, “New method for extractionbased on fractal behavior,” Pattern Recognition, vol. 35, pp. 1071–1081, 2002. View at Publisher · View at Google Scholar
  18. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, Calif, USA, 1982. View at MathSciNet
  19. B. B. Chaudhuri and N. Sarkar, “Texture segmentation using fractal dimension,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 1, pp. 72–77, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Y. Tang, J. Liu, H. Ma, and B. Li, “Two-dimensional wavelet transform indocument analysis,” in Proceedings of the 1st International Conferenceon Multimodal Interface, pp. 274–279, Beijing, China, October 1996.
  21. D. Cyganski and R. F. Vaz, “A linear signal decomposition approach to affineinvariant contour identification,” in Intelligent Robots and Computer Vision X, vol. 1607 of Proceedings of SPIE, pp. 98–109, 1991.
  22. K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger, “Application of affine-invariant Fourier descriptors to recognition of 3-D objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 640–647, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Yang, K. Kpalma, and J. Ronsin, “Affine invariance contour desciptor based on the equal area normalization,” IAENG International Journal of Applied Mathematics, vol. 36, no. 2, paper 5, p. 6, 2007. View at Zentralblatt MATH · View at MathSciNet
  24. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, UK, 1990. View at MathSciNet
  25. G. A. Edgar, Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, 1990. View at MathSciNet
  26. J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,” Pattern Recognition, vol. 26, no. 1, pp. 167–174, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  27. E. Rahtu, M. Salo, and J. Heikkilä, “Affine invariant pattern recognition using multiscale autoconvolution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 6, pp. 908–918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
  29. K. Jafari-Khouzani and H. Soltanian-Zadeh, “Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms,” IEEE Transactions on Image Processing, vol. 14, no. 6, pp. 783–795, 2005. View at Publisher · View at Google Scholar · View at MathSciNet