About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2013 (2013), Article ID 958120, 10 pages
http://dx.doi.org/10.1155/2013/958120
Research Article

Delta Shock Waves for a Linearly Degenerate Hyperbolic System of Conservation Laws of Keyfitz-Kranzer Type

School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, China

Received 6 December 2012; Revised 1 March 2013; Accepted 18 March 2013

Academic Editor: Dongho Chae

Copyright © 2013 Hongjun Cheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is devoted to the study of delta shock waves for a hyperbolic system of conservation laws of Keyfitz-Kranzer type with two linearly degenerate characteristics. The Riemann problem is solved constructively. The Riemann solutions include exactly two kinds. One consists of two (or just one) contact discontinuities, while the other contains a delta shock wave. Under suitable generalized Rankine-Hugoniot relation and entropy condition, the existence and uniqueness of delta shock solution are established. These analytical results match well the numerical ones. Finally, two kinds of interactions of elementary waves are discussed.

1. Introduction

Consider the following hyperbolic system of conservation laws: where with . Model (1) belongs to the nonsymmetric system of Keyfitz-Kranzer type [1, 2] as System (1) was also introduced as a macroscopic model for traffic flow by Aw and Rascle [3], where and are the density and the velocity of cars on the roadway, and the function is smooth and strictly increasing and it satisfies Model (1) was also studied by Lu [2]. By using the compensated compactness method, he established the existence of global bounded weak solutions of the Cauchy problem under the following two assumptions on , respectively:

One can find that system (1) has two characteristics; one is always linearly degenerate while the other is linearly degenerate or genuinely nonlinear depending on the behaviors of . In [2, 3], the condition (3) is required, which implies that the second characteristic is genuinely nonlinear. Thus, one interesting topic is the case when both characteristics are linearly degenerate.

These motivate us to consider (1) with which is the prototype function satisfying For system (1) with (5) or (6), a distinctive feature is that both eigenvalues are linearly degenerate; that is, this is a fully linearly degenerate system. Thus, all the classical elementary waves only consist of contact discontinuities. Moreover, the overlapping of linearly degenerate characteristics may result in the formation of delta shock wave. A delta shock wave is a generalization of an ordinary shock wave. Speaking informally, it is a kind of discontinuity, on which at least one of the state variables may develop an extreme concentration in the form of a Dirac delta function with the discontinuity as its support. It is more compressive than an ordinary shock wave in the sense that more characteristics enter the discontinuity line. From the physical point of view, a delta shock wave represents the process of concentration of the mass and formation of the universe. For related results of delta shock waves, we refer the readers to the papers [424] and the references therein.

Putting (5) into (1), we obtain the equivalent system Firstly, we consider the Riemann problem for (7) with initial data By the analysis method in phase plane, when , we can construct Riemann solution only involving two different (or just one) contact discontinuities. However, for the case , we find that the Riemann solution can not be constructed by these classical contact discontinuities and delta shock wave should occur. For delta shock wave, by a definition of measure solutions to (7), we derive the generalized Rankine-Hugoniot relation which describes the relation among the limit states on both sides of the discontinuity, location, propagation speed, weight, and the assignment of the component on its discontinuity relative to the delta shock wave. The entropy condition is an overcompressive one and guarantees the uniqueness of solution. With the generalized Rankine-Hugoniot relation and entropy condition, we solve the delta shock solution uniquely. Secondly, we simulate the obtained Riemann solutions by using N-T scheme [25] and get the numerical results coinciding with the analytical ones. Thirdly, we study two kinds of interactions of delta shock waves and contact discontinuities by considering the initial-value problem with initial data as where is a constant. In the first kind, the interaction of two contact discontinuities leads to a delta shock wave. In the second one, the delta shock wave vanishes after it interacts with a contact discontinuity. Such two cases are not encountered in the interactions of elementary waves for some other systems, such as the zero-pressure gas dynamics.

This paper is organized as follows. In Section 2, we present some preliminaries and construct the Riemann solution consisting of contact discontinuities by phase plane analysis method. Then, in Section 3, with suitable generalized Rankine-Hugoniot relation and entropy condition, we solve delta shock solution uniquely. Section 4 presents some numerical results of Riemann solutions obtained by using the Nessyahu-Tadmor scheme [25]. Finally, in Section 5, we study two kinds of interactions of delta shock waves and contact discontinuities.

2. Preliminaries and Solutions Involving Contact Discontinuities

In this section, we analyze some basic properties and then solve the Riemann problem (7)-(8) by the analysis in phase plane. The system has two eigenvalues with associated right eigenvectors satisfying Thus, system (7) is fully linearly degenerate. The linear degeneracy also excludes the possibility of rarefaction waves and shock waves.

As usual, we seek the self-similar solution for which system (7) becomes and initial data (8) changes to the boundary condition This is a two-point boundary value problem of first-order ordinary differential equations with the boundary values in the infinity.

For any smooth solution, (14) turns into It provides either the general solutions (constant states) or singular solutions Integrating (18) from to , respectively, one can get that Indeed, (19) are contact discontinuities; see (21) and (22) in the following.

For a bounded discontinuous solution at , the Rankine-Hugoniot relation holds, where is the jump of across the discontinuous line and is the velocity of the discontinuity. A simple calculation gives Obviously, (21) and (22) are two kinds of contact discontinuities, denoted by and , respectively. In the phase plane, the curves expressed by the second equations in (21) and (22) are called the contact discontinuity curves.

Starting from any point , we draw the curve for in the phase plane, which is parallel to the -axis. We also draw the curve for , which is monotonically increasing and has the lines and as its two asymptotic lines. Also, from the point , we draw the curve . Then the phase plane is divided into five regions as follows (shown in Figure 1):

958120.fig.001
Figure 1: Contact discontinuity curves.

By the analysis method in the phase plane, when , namely, , one can easily construct the solution consisting of two different (or just one) contact discontinuities (see Figure 2), in which, the intermediate states connecting two contact discontinuities satisfy

958120.fig.002
Figure 2: Riemann solution involving two contact discontinuities.

3. Delta Shock Solution

In this section, let us in detail discuss the last case when ; that is, . The characteristic lines from initial data will overlap in a domain shown in Figure 3. So singularity must happen in . It is easy to know that the singularity is impossible to be a jump with finite amplitude because the Rankine-Hugoniot relation is not satisfied on the bounded jump. In other words, there is no solution which is piecewise smooth and bounded. Motivated by [7, 8, 16, 21, 22], we seek solutions with delta distribution at the jump.

958120.fig.003
Figure 3: Riemann solution containing delta shock wave.

Denote by the space of bounded Borel measures on , and then the definition of a measure solution of (7) in can be given as follows (see [16, 22, 24]).

Definition 1. A pair is called a measure solution to (7) if there hold and (7) is satisfied in measured and distributional senses; that is, for all test function .

Definition 2. A two-dimensional weighted delta function supported on a smooth curve parameterized as , is defined by for all .

Let us consider the discontinuity of (7) of the form in which and are piecewise smooth bounded solutions of (7), for which we also set for the concentration in needs to travel at the speed of discontinuity (also see [16, 22, 24]). We assert that the discontinuity (29) is a measure solution to (7) if and only if the following relation is satisfied.

In fact, for any , with Green’s formula and taking (7) in mind, one can calculate where , , is the boundaries of , and are the line integral on boundaries .

Similarly, we have With the above results, we can reach the assertion easily.

Relation (30) reflects the exact relationship among the limit states on two sides of the discontinuity, the weight, propagation speed and the location of the discontinuity. We call it the generalized Rankine-Hugoniot relation of the discontinuity.

In addition, the admissibility (entropy) condition for the discontinuity (29) is which means that all characteristics on both sides of the discontinuity are not outcoming and guarantees uniqueness of solution.

Definition 3. A discontinuity which is presented in the form (29) and satisfies (30) and (33) will be called a delta shock wave to system (7), symbolized by .

In what follows, the generalized Rankine-Hugoniot relation will in particular be applied to the Riemann problem (7)-(8) for the case , which is equivalent to the inequality that is,

At this moment, the Riemann solution is a delta shock wave besides two constant states with the form To determine , , and uniquely, we solve (30) with initial data under entropy condition (33) which is, at this moment, From (30) and (36), it follows that Multiplying the first equation in (37) by and then subtracting it from the second one, we obtain that or It gives From (40), we can find that is a constant and . Then (40) can be rewritten into When , (41) is just a linear equation of , and then we have which satisfies the entropy condition obviously.

When , (41) is just a quadratic equation with respect to , and the discriminant is by virtue of (34), and then we can find

Next, with the help of the entropy condition , we will choose the admissible solution to Riemann problem (7)-(8) from (44) and (45). Taking into account , one can calculate that Then, for solution (44), we have which imply that the entropy condition is valid. One can easily observe especially that, in the two inequalities above, both of the signs “ ” are valid if and only if . In this case, we have .

For solution (45), when , and when , These show that the solution (45) does not satisfy the entropy condition .

Thus we have proved the following result.

Theorem 4. Let . Then Riemann problem (8) for (7) admits one and only one entropy solution in the sense of measures of the form where and are shown in (42) for or (44) for .

At last, associating with the results in Section 2, we can conclude the following.

Theorem 5. For Riemann problem (7)-(8), there exists a unique entropy solution, which contains two different (or just one) contact discontinuities when and a delta shock wave when .

4. Numerical Simulations for Riemann Solutions

In this section, by employing the Nessyahu-Tadmor scheme [25] with cells and , we simulate the obtained Riemann solutions in two cases and . We take .

For the case , we take , and from (24), we can calculate . For the case , we take . The numerical results are presented in Figures 4 and 5, respectively.

fig4
Figure 4: Numerical results for the case at .
fig5
Figure 5: Numerical results for the case at .

It can be clearly observed that the contact discontinuities develop in Figure 4 while a delta shock wave is developed in Figure 5. All the numerical results are in complete agreement with the theoretical analysis.

5. Two kinds of Interactions of Elementary Waves

In this section, we investigate two kinds of interesting interactions of elementary waves by considering the initial-value problem (9) for system (7). The first case is that the interaction of two contact discontinuities results in a delta shock wave. The second case is that a delta shock wave vanishes after its interaction with a contact discontinuity.

Case (i). Assume that the initial data in (9) satisfy At this moment, a contact discontinuity emits from with a speed and a contact discontinuity emits from with a speed , respectively. From , it is known that will overtake at a point , which can be calculated to be . At the moment , a new Riemann problem is formed with and on both sides. We consider the following situation for : which means that from (51) Then from Theorem 5, it can be concluded that a delta shock wave emits from the moment , whose speed, location, and weight can be obtained by solving (30) under (33) with initial data See Figure 6(a), in which .

fig6
Figure 6: Two kinds of interactions of elementary waves.

Case (ii). Suppose the initial data (9) in satisfy At this time, a delta shock wave emits from with the speed satisfying and a contact discontinuity emits from with the speed . Since , will interact with at a point . As before, at the moment , a new Riemann problem is formed with and on both sides. Let us suppose that the initial data furthermore satisfy then from Theorem 5, we can conclude that two contact discontinuities emit form as follows: and the intermediate states connecting two contact discontinuities satisfy See Figure 6(b), in which .

Acknowledgments

This paper is partly supported by the National Natural Science Foundation of China (11226191) and the Scientific Research Foundation of Yunnan University (2011YB30). The author would like to thank Professor Hanchun Yang, his advisor, for some valuable and inspiring discussions and suggestions.

References

  1. B. L. Keyfitz and H. C. Kranzer, “A system of nonstrictly hyperbolic conservation laws arising in elasticity theory,” Archive for Rational Mechanics and Analysis, vol. 72, no. 3, pp. 219–241, 1980. View at Publisher · View at Google Scholar · View at MathSciNet
  2. Y. Lu, “Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type,” Journal of Functional Analysis, vol. 261, no. 10, pp. 2797–2815, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. A. Aw and M. Rascle, “Resurrection of “second order” models of traffic flow,” SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 916–938, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. F. Bouchut, “On zero pressure gas dynamics,” in Advances in Kinetic Theory and Computing: Selected Papers, B. Perthame, Ed., vol. 22, pp. 171–190, World Scientific, Singapore, 1994. View at Zentralblatt MATH · View at MathSciNet
  5. G.-Q. Chen and H. Liu, “Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids,” SIAM Journal on Mathematical Analysis, vol. 34, no. 4, pp. 925–938, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  6. G.-Q. Chen and H. Liu, “Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids,” Physica D, vol. 189, no. 1-2, pp. 141–165, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. H. Cheng, H. Yang, and Y. Zhang, “Riemann problem for the Chaplygin Euler equations of compressible fluid flow,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 11, pp. 985–992, 2010.
  8. H. Cheng and H. Yang, “Riemann problem for the relativistic Chaplygin Euler equations,” Journal of Mathematical Analysis and Applications, vol. 381, no. 1, pp. 17–26, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. H. Cheng and H. Yang, “Delta shock waves in chromatography equations,” Journal of Mathematical Analysis and Applications, vol. 380, no. 2, pp. 475–485, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. H. Cheng and H. Yang, “Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow,” Acta Applicandae Mathematicae, vol. 113, no. 3, pp. 323–348, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. V. G. Danilov and D. Mitrovic, “Delta shock wave formation in the case of triangular hyperbolic system of conservation laws,” Journal of Differential Equations, vol. 245, no. 12, pp. 3704–3734, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. V. G. Danilov and V. M. Shelkovich, “Dynamics of propagation and interaction of δ-shock waves in conservation law systems,” Journal of Differential Equations, vol. 211, no. 2, pp. 333–381, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  13. L. Guo, W. Sheng, and T. Zhang, “The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system,” Communications on Pure and Applied Analysis, vol. 9, no. 2, pp. 431–458, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. K. T. Joseph, “A Riemann problem whose viscosity solutions contain δ-measures,” Asymptotic Analysis, vol. 7, no. 2, pp. 105–120, 1993. View at MathSciNet
  15. B. L. Keyfitz and H. C. Kranzer, “Spaces of weighted measures for conservation laws with singular shock solutions,” Journal of Differential Equations, vol. 118, no. 2, pp. 420–451, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. J. Li and T. Zhang, “Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations,” in NonlInear PDE and Related Areas, G. Q. Chen, Ed., pp. 219–232, World Scientific, Singapore, 1998.
  17. E. Yu. Panov and V. M. Shelkovich, “δ'-shock waves as a new type of solutions to systems of conservation laws,” Journal of Differential Equations, vol. 228, no. 1, pp. 49–86, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. V. M. Shelkovich, “The Riemann problem admitting δ-, δ'-shocks, and vacuum states (the vanishing viscosity approach),” Journal of Differential Equations, vol. 231, no. 2, pp. 459–500, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  19. W. Sheng and T. Zhang, “The Riemann problem for the transportation equations in gas dynamics,” Memoirs of the American Mathematical Society, vol. 137, no. 654, 1999. View at Zentralblatt MATH · View at MathSciNet
  20. D. C. Tan and T. Zhang, “Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws. I. Four-J cases,” Journal of Differential Equations, vol. 111, no. 2, pp. 203–254, 1994. View at Publisher · View at Google Scholar · View at MathSciNet
  21. D. Tan, T. Zhang, and Y. Zheng, “Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conversation laws,” Journal of Differential Equations, vol. 112, no. 1, pp. 1–32, 2004.
  22. H. Yang, “Riemann problems for a class of coupled hyperbolic systems of conservation laws,” Journal of Differential Equations, vol. 159, no. 2, pp. 447–484, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. H. Yang and Y. Zhang, “New developments of delta shock waves and its applications in systems of conservation laws,” Journal of Differential Equations, vol. 252, no. 11, pp. 5951–5993, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. Y. Zheng, “Systems of conservation laws with incomplete sets of eigenvectors everywhere,” in Advances in Nonlinear Partial Differential Equations and Related Areas, G. Q. Chen, Ed., pp. 399–426, Word Scientific, Singapore, 1998. View at Zentralblatt MATH · View at MathSciNet
  25. H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” Journal of Computational Physics, vol. 87, no. 2, pp. 408–463, 1990. View at Publisher · View at Google Scholar · View at MathSciNet