About this Journal Submit a Manuscript Table of Contents
Advances in Mathematical Physics
Volume 2014 (2014), Article ID 180656, 7 pages
http://dx.doi.org/10.1155/2014/180656
Research Article

Description of Dispersive Wave Emission and Supercontinuum Generation in Silicon Waveguides Using Split-Step Fourier and Runge-Kutta Integration Methods

School of Science, Xi’an University of Post & Telecommunications, Xi’an 710121, China

Received 6 January 2014; Accepted 2 March 2014; Published 27 March 2014

Academic Editor: Boris G. Konopelchenko

Copyright © 2014 Xuefeng Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nature Photonics, vol. 3, no. 2, pp. 85–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” Journal of Lightwave Technology, vol. 5, no. 12, pp. 1712–1715, 1987. View at Scopus
  3. J. Herrmann, U. Griebner, N. Zhavoronkov et al., “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Physical Review Letters, vol. 88, no. 17, Article ID 173901, 2002. View at Scopus
  4. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Optics Letters, vol. 27, no. 11, pp. 924–926, 2002. View at Scopus
  5. A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Applied Physics B: Lasers and Optics, vol. 86, no. 1, pp. 31–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Foster, J. M. Dudley, B. Kibler et al., “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Applied Physics B: Lasers and Optics, vol. 81, no. 2-3, pp. 363–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Optics Express, vol. 15, no. 25, pp. 16604–16644, 2007. View at Scopus
  8. M. Zhu, H. Liu, X. Li et al., “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Optics Express, vol. 20, pp. 15899–15907, 2012.
  9. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Optics Letters, vol. 32, no. 14, pp. 2031–2033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on Mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Optics Express, vol. 21, pp. 1840–1848, 2013.
  11. X. Li, Z. Wang, and H. Liu, “Optimizing initial chirp for efficient femtosecond wavelength conversion in silicon waveguide by split-step Fourier method,” Applied Mathematics and Computation, vol. 218, pp. 11970–11975, 2012. View at Zentralblatt MATH
  12. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Optics Letters, vol. 32, no. 4, pp. 391–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I.-W. Hsieh, X. Chen, X. Liu et al., “Supercontinuum generation in silicon photonic wires,” Optics Express, vol. 15, no. 23, pp. 15242–15249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide,” Applied Physics B: Lasers and Optics, vol. 104, no. 4, pp. 867–871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE Journal of Quantum Electronics, vol. 25, no. 12, pp. 2665–2673, 1989. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Wang, “Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations,” Applied Mathematics and Computation, vol. 170, no. 1, pp. 17–35, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. X. Xiangming and T. R. Taha, “Parallel split-step fourier methods for nonlinear Schrodinger-type equations,” Journal of Mathematical Modelling and Algorithms, vol. 2, pp. 185–201, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. G. M. Muslu and H. A. Erbay, “Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation,” Mathematics and Computers in Simulation, vol. 67, no. 6, pp. 581–595, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  19. S. Zhang, Z. Deng, and W. Li, “A precise Runge-Kutta integration and its application for solving nonlinear dynamical systems,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 496–502, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. M. Z. Liu, S. F. Ma, and Z. W. Yang, “Stability analysis of Runge-Kutta methods for unbounded retarded differential equations with piecewise continuous arguments,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 57–66, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. B. S. Attili, K. Furati, and M. I. Syam, “An efficient implicit Runge-Kutta method for second order systems,” Applied Mathematics and Computation, vol. 178, no. 2, pp. 229–238, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. T. E. Murphy, software, http://www.photonics.umd.edu/.