Advances in Mathematical Physics http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Hybrid Dislocated Control and General Hybrid Projective Dislocated Synchronization for Memristor Chaotic Oscillator System Thu, 16 Oct 2014 06:13:07 +0000 http://www.hindawi.com/journals/amp/2014/563172/ Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods. Junwei Sun, Chun Huang, and Guangzhao Cui Copyright © 2014 Junwei Sun et al. All rights reserved. Effect of Third-Order Dispersion on the Solitonic Solutions of the Schrödinger Equations with Cubic Nonlinearity Mon, 15 Sep 2014 09:33:33 +0000 http://www.hindawi.com/journals/amp/2014/323591/ We derive the solitonic solution of the nonlinear Schrödinger equation with cubic nonlinearity, complex potentials, and time-dependent coefficients using the Darboux transformation. We establish the integrability condition for the most general nonlinear Schrödinger equation with cubic nonlinearity and discuss the effect of the coefficients of the higher-order terms in the solitonic solution. We find that the third-order dispersion term can be used to control the soliton motion without the need for an external potential. We discuss the integrability conditions and find the solitonic solution of some of the well-known nonlinear Schrödinger equations with cubic nonlinearity and time-dependent coefficients. We also investigate the higher-order nonlinear Schrödinger equation with cubic and quintic nonlinearities. H. Chachou Samet, M. Benarous, M. Asad-uz-zaman, and U. Al Khawaja Copyright © 2014 H. Chachou Samet et al. All rights reserved. Exact Solutions of the Time Fractional BBM-Burger Equation by Novel -Expansion Method Thu, 11 Sep 2014 10:23:57 +0000 http://www.hindawi.com/journals/amp/2014/181594/ The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method. Muhammad Shakeel, Qazi Mahmood Ul-Hassan, Jamshad Ahmad, and Tauseef Naqvi Copyright © 2014 Muhammad Shakeel et al. All rights reserved. Low Temperature Expansion in the Lifshitz Formula Tue, 09 Sep 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/981586/ The low temperature expansion of the free energy in a Casimir effect setup is considered in detail. The starting point is the Lifshitz formula in Matsubara representation and the basic method is its reformulation using the Abel-Plana formula making full use of the analytic properties. This provides a unified description of specific models. We rederive the known results and, in a number of cases, we are able to go beyond. We also discuss the cases with dissipation. It is an aim of the paper to give a coherent exposition of the asymptotic expansions for . The paper includes the derivations and should provide a self-contained representation. M. Bordag Copyright © 2014 M. Bordag. All rights reserved. On Generalized Jordan Prederivations and Generalized Prederivations of Lie Superalgebras Tue, 02 Sep 2014 13:05:24 +0000 http://www.hindawi.com/journals/amp/2014/401238/ The concepts of (generalized) -prederivations and (generalized) Jordan -prederivations on a Lie superalgebra are introduced. It is proved that Jordan -prederivations (resp., generalized Jordan -prederivations) are -prederivations (resp., generalized -prederivations) on a Lie superalgebra under some conditions. In particular, Jordan -prederivations are -prederivations on a Lie superalgebra. Yao Ma and Liangyun Chen Copyright © 2014 Yao Ma and Liangyun Chen. All rights reserved. -Soliton Solutions of the Nonisospectral Generalized Sawada-Kotera Equation Mon, 01 Sep 2014 06:09:27 +0000 http://www.hindawi.com/journals/amp/2014/547692/ The soliton interaction is investigated based on solving the nonisospectral generalized Sawada-Kotera (GSK) equation. By using Hirota method, the analytic one-, two-, three-, and -soliton solutions of this model are obtained. According to those solutions, the relevant properties and features of line-soliton and bright-soliton are illustrated. The results of this paper will be useful to the study of soliton resonance in the inhomogeneous media. Jian Zhou, Xiang-Gui Li, and Deng-Shan Wang Copyright © 2014 Jian Zhou et al. All rights reserved. An Alternative Approach to Energy Eigenvalue Problems of Anharmonic Potentials Wed, 27 Aug 2014 08:24:33 +0000 http://www.hindawi.com/journals/amp/2014/537563/ Energy eigenvalues of quartic and sextic type anharmonic potentials are obtained by using an alternative method called asymptotic Taylor expansion method (ATEM) which is an approximate approach based on the asymptotic Taylor series expansion of a function. It is shown that the energy eigenvalues found by ATEM are in excellent agreement with the existing results. Okan Ozer and Halide Koklu Copyright © 2014 Okan Ozer and Halide Koklu. All rights reserved. Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source Sun, 24 Aug 2014 12:37:37 +0000 http://www.hindawi.com/journals/amp/2014/301747/ This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a -Laplacian equation with a localized reaction. We obtain the Fujita exponent of the equation. Yulan Wang, Xiaojun Song, and Chao Ye Copyright © 2014 Yulan Wang et al. All rights reserved. Antiperiodic Solutions for a Kind of Nonlinear Duffing Equations with a Deviating Argument and Time-Varying Delay Mon, 18 Aug 2014 08:25:50 +0000 http://www.hindawi.com/journals/amp/2014/734632/ This paper deals with a kind of nonlinear Duffing equation with a deviating argument and time-varying delay. By using differential inequality techniques, some very verifiable criteria on the existence and exponential stability of antiperiodic solutions for the equation are obtained. Our results are new and complementary to previously known results. An example is given to illustrate the feasibility and effectiveness of our main results. Changjin Xu and Maoxin Liao Copyright © 2014 Changjin Xu and Maoxin Liao. All rights reserved. On New Conservation Laws of Fin Equation Thu, 14 Aug 2014 11:23:57 +0000 http://www.hindawi.com/journals/amp/2014/695408/ We study the new conservation forms of the nonlinear fin equation in mathematical physics. In this study, first, Lie point symmetries of the fin equation are identified and classified. Then by using the relationship of Lie symmetry and -symmetry, new -functions are investigated. In addition, the Jacobi Last Multiplier method and the approach, which is based on the fact -functions are assumed to be of linear form, are considered as different procedures for lambda symmetry analysis. Finally, the corresponding new conservation laws and invariant solutions of the equation are presented. Gülden Gün Polat, Özlem Orhan, and Teoman Özer Copyright © 2014 Gülden Gün Polat et al. All rights reserved. A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments Wed, 13 Aug 2014 13:30:19 +0000 http://www.hindawi.com/journals/amp/2014/694580/ A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods. Ayşe Betül Koç, Musa Çakmak, and Aydın Kurnaz Copyright © 2014 Ayşe Betül Koç et al. All rights reserved. Convergence Analysis of Legendre Pseudospectral Scheme for Solving Nonlinear Systems of Volterra Integral Equations Tue, 12 Aug 2014 10:08:22 +0000 http://www.hindawi.com/journals/amp/2014/307907/ We are concerned with the extension of a Legendre spectral method to the numerical solution of nonlinear systems of Volterra integral equations of the second kind. It is proved theoretically that the proposed method converges exponentially provided that the solution is sufficiently smooth. Also, three biological systems which are known as the systems of Lotka-Volterra equations are approximately solved by the presented method. Numerical results confirm the theoretical prediction of the exponential rate of convergence. Emran Tohidi, O. R. Navid Samadi, and S. Shateyi Copyright © 2014 Emran Tohidi et al. All rights reserved. On Conservation Forms and Invariant Solutions for Classical Mechanics Problems of Liénard Type Thu, 07 Aug 2014 10:27:25 +0000 http://www.hindawi.com/journals/amp/2014/107895/ In this study we apply partial Noether and -symmetry approaches to a second-order nonlinear autonomous equation of the form , called Liénard equation corresponding to some important problems in classical mechanics field with respect to and functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the -symmetry method, we analyze -symmetries for the case that -function is in the form of . Finally, a classification problem for the conservation forms and invariant solutions are considered. Gülden Gün Polat and Teoman Özer Copyright © 2014 Gülden Gün Polat and Teoman Özer. All rights reserved. Field Equations in the Complex Quaternion Spaces Wed, 06 Aug 2014 08:11:29 +0000 http://www.hindawi.com/journals/amp/2014/450262/ The paper aims to adopt the complex quaternion and octonion to formulate the field equations for electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition to combine some physics contents of two fields, which were considered to be independent of each other in the past. J. C. Maxwell applied simultaneously the vector terminology and the quaternion analysis to depict the electromagnetic theory. This method edified the paper to introduce the quaternion and octonion spaces into the field theory, in order to describe the physical feature of electromagnetic and gravitational fields, while their coordinates are able to be the complex number. The octonion space can be separated into two subspaces, the quaternion space and the -quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, field equations, and so forth, in the gravitational field. In the -quaternion space, it is able to deduce the field potential, field strength, field source, and so forth, in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features; meanwhile, the -quaternion space is proper to depict the electromagnetic features. Zi-Hua Weng Copyright © 2014 Zi-Hua Weng. All rights reserved. Effect of Velocity Slip Boundary Condition on the Flow and Heat Transfer of Cu-Water and TiO2-Water Nanofluids in the Presence of a Magnetic Field Tue, 05 Aug 2014 07:34:09 +0000 http://www.hindawi.com/journals/amp/2014/538950/ In nanofluid mechanics, it has been proven recently that the no slip condition at the boundary is no longer valid which is the reason that we consider the effect of such slip condition on the flow and heat transfer of two types of nanofluids. The present paper considers the effect of the velocity slip condition on the flow and heat transfer of the Cu-water and the TiO2-water nanofluids over stretching/shrinking sheets in the presence of a magnetic field. The exact expression for the fluid velocity is obtained in terms of the exponential function, while an effective analytical procedure is suggested and successfully applied to obtain the exact temperature in terms of the generalized incomplete gamma function. It is found in this paper that the Cu-water nanofluid is slower than the TiO2-water nanofluid for both cases of the stretching/shrinking sheets. However, the temperature of the Cu-water nanofluid is always higher than the temperature of the TiO2-water nanofluid. In the case of shrinking sheet the dual solutions have been obtained at particular values of the physical parameters. In addition, the effect of various physical parameters on such dual solutions is discussed through the graphs. Abdelhalim Ebaid, Fahd Al Mutairi, and S. M. Khaled Copyright © 2014 Abdelhalim Ebaid et al. All rights reserved. New Neumann System Associated with a 3 × 3 Matrix Spectral Problem Thu, 24 Jul 2014 09:34:56 +0000 http://www.hindawi.com/journals/amp/2014/708603/ The nonlinearization approach of Lax pair is applied to the case of the Neumann constraint associated with a 3 × 3 matrix spectral problem, from which a new Neumann system is deduced and proved to be completely integrable in the Liouville sense. As an application, solutions of the first nontrivial equation related to the 3 × 3 matrix spectral problem are decomposed into solving two compatible Hamiltonian systems of ordinary differential equations. Fang Li and Liping Lu Copyright © 2014 Fang Li and Liping Lu. All rights reserved. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods Tue, 22 Jul 2014 11:02:40 +0000 http://www.hindawi.com/journals/amp/2014/456804/ We apply the functional variable method, exp-function method, and -expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE) in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations. Özkan Güner and Dursun Eser Copyright © 2014 Özkan Güner and Dursun Eser. All rights reserved. Developing a Local Neurofuzzy Model for Short-Term Wind Power Forecasting Wed, 16 Jul 2014 08:56:43 +0000 http://www.hindawi.com/journals/amp/2014/637017/ Large scale integration of wind generation capacity into power systems introduces operational challenges due to wind power uncertainty and variability. Therefore, accurate wind power forecast is important for reliable and economic operation of the power systems. Complexities and nonlinearities exhibited by wind power time series necessitate use of elaborative and sophisticated approaches for wind power forecasting. In this paper, a local neurofuzzy (LNF) approach, trained by the polynomial model tree (POLYMOT) learning algorithm, is proposed for short-term wind power forecasting. The LNF approach is constructed based on the contribution of local polynomial models which can efficiently model wind power generation. Data from Sotavento wind farm in Spain was used to validate the proposed LNF approach. Comparison between performance of the proposed approach and several recently published approaches illustrates capability of the LNF model for accurate wind power forecasting. E. Faghihnia, S. Salahshour, A. Ahmadian, and N. Senu Copyright © 2014 E. Faghihnia et al. All rights reserved. On the Use of Lie Group Homomorphisms for Treating Similarity Transformations in Nonadiabatic Photochemistry Tue, 15 Jul 2014 08:34:52 +0000 http://www.hindawi.com/journals/amp/2014/795730/ A formulation based on Lie group homomorphisms is presented for simplifying the treatment of unitary similarity transformations of Hamiltonian matrices in nonadiabatic photochemistry. A general derivation is provided whereby it is shown that a similarity transformation acting on a traceless, Hermitian matrix through a unitary matrix of is equivalent to the product of a single matrix of by a real vector. We recall how Pauli matrices are the adequate tool when and show how the same is achieved for with Gell-Mann matrices. Benjamin Lasorne Copyright © 2014 Benjamin Lasorne. All rights reserved. A Weak Convergence to Hermite Process by Martingale Differences Mon, 14 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/307819/ We consider the weak convergence to general Hermite process of order with index . By applying martingale differences we construct a sequence of multiple Wiener-Itô stochastic integrals such that it converges in distribution to the Hermite process . Xichao Sun and Ronglong Cheng Copyright © 2014 Xichao Sun and Ronglong Cheng. All rights reserved. Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation Wed, 09 Jul 2014 08:52:45 +0000 http://www.hindawi.com/journals/amp/2014/548920/ Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values. Jiuli Yin, Liuwei Zhao, and Shanyu Ding Copyright © 2014 Jiuli Yin et al. All rights reserved. On the Existence of Central Configurations of -Body Problems Wed, 09 Jul 2014 08:04:58 +0000 http://www.hindawi.com/journals/amp/2014/629467/ We prove the existence of central configurations of the -body problems with Newtonian potentials in . In such configuration, masses are symmetrically located on the -axis, masses are symmetrically located on the -axis, and masses are symmetrically located on the -axis, respectively; the masses symmetrically about the origin are equal. Yueyong Jiang and Furong Zhao Copyright © 2014 Yueyong Jiang and Furong Zhao. All rights reserved. Symmetries, Traveling Wave Solutions, and Conservation Laws of a -Dimensional Boussinesq Equation Wed, 02 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/672679/ We analyze the -dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the -dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the -dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov. Letlhogonolo Daddy Moleleki and Chaudry Masood Khalique Copyright © 2014 Letlhogonolo Daddy Moleleki and Chaudry Masood Khalique. All rights reserved. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators Mon, 30 Jun 2014 12:04:54 +0000 http://www.hindawi.com/journals/amp/2014/161580/ We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative. Sheng-Ping Yan, Hossein Jafari, and Hassan Kamil Jassim Copyright © 2014 Sheng-Ping Yan et al. All rights reserved. Local Fractional Laplace Variational Iteration Method for Fractal Vehicular Traffic Flow Sun, 29 Jun 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/649318/ We discuss the line partial differential equations arising in fractal vehicular traffic flow. The nondifferentiable approximate solutions are obtained by using the local fractional Laplace variational iteration method, which is the coupling method of local fractional variational iteration method and Laplace transform. The obtained results show the efficiency and accuracy of implements of the present method. Yang Li, Long-Fei Wang, Sheng-Da Zeng, and Yang Zhao Copyright © 2014 Yang Li et al. All rights reserved. Nonlinear Fluid Flow and Heat Transfer Tue, 24 Jun 2014 06:51:29 +0000 http://www.hindawi.com/journals/amp/2014/719102/ O. D. Makinde, R. J. Moitsheki, R. N. Jana, B. H. Bradshaw-Hajek, and W. A. Khan Copyright © 2014 O. D. Makinde et al. All rights reserved. The Nondifferentiable Solution for Local Fractional Tricomi Equation Arising in Fractal Transonic Flow by Local Fractional Variational Iteration Method Thu, 19 Jun 2014 12:49:50 +0000 http://www.hindawi.com/journals/amp/2014/983254/ We present the nondifferentiable approximate solution for local fractional Tricomi equation arising in fractal transonic flow by local fractional variational iteration method. Some illustrative examples are shown and graphs are also given. Ai-Min Yang, Yu-Zhu Zhang, and Xiao-Long Zhang Copyright © 2014 Ai-Min Yang et al. All rights reserved. Spectral Relaxation Method and Spectral Quasilinearization Method for Solving Unsteady Boundary Layer Flow Problems Wed, 18 Jun 2014 08:54:18 +0000 http://www.hindawi.com/journals/amp/2014/341964/ Nonlinear partial differential equations (PDEs) modelling unsteady boundary-layer flows are solved by the spectral relaxation method (SRM) and the spectral quasilinearization method (SQLM). The SRM and SQLM are Chebyshev pseudospectral based methods that have been successfully used to solve nonlinear boundary layer flow problems described by systems of ordinary differential equations. In this paper application of these methods is extended, for the first time, to systems of nonlinear PDEs that model unsteady boundary layer flow. The new extension is tested on two problems: boundary layer flow caused by an impulsively stretching plate and a coupled four-equation system that models the problem of unsteady MHD flow and mass transfer in a porous space. Numerous simulation experiments are conducted to determine the accuracy and compare the computational performance of the proposed methods against the popular Keller-box finite difference scheme which is widely accepted as being one of the ideal tools for solving nonlinear PDEs that model boundary layer flow problems. The results indicate that the methods are more efficient in terms of computational accuracy and speed compared with the Keller-box. S. S. Motsa, P. G. Dlamini, and M. Khumalo Copyright © 2014 S. S. Motsa et al. All rights reserved. Delta Shock Wave for the Suliciu Relaxation System Wed, 18 Jun 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/354349/ We study the one-dimensional Riemann problem for a hyperbolic system of three conservation laws of Temple class. This system is a simplification of a recently proposed system of five conservations laws by Bouchut and Boyaval that model viscoelastic fluids. An important issue is that the considered system is such that every characteristic field is linearly degenerate. We show an explicit solution for the Cauchy problem with initial data in . We also study the Riemann problem for this system. Under suitable generalized Rankine-Hugoniot relation and entropy condition, both existence and uniqueness of particular delta-shock type solutions are established. Richard De la cruz, Juan Galvis, Juan Carlos Juajibioy, and Leonardo Rendón Copyright © 2014 Richard De la cruz et al. All rights reserved. Bifurcation Analysis and Different Kinds of Exact Travelling Wave Solutions of a Generalized Two-Component Hunter-Saxton System Wed, 18 Jun 2014 00:00:00 +0000 http://www.hindawi.com/journals/amp/2014/379109/ This paper focuses on a generalized two-component Hunter-Saxton system. From a dynamic point of view, the existence of different kinds of periodic wave, solitary wave, and blow-up wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given. Also, some exact parametric representations of the travelling waves are presented. Qing Meng and Bin He Copyright © 2014 Qing Meng and Bin He. All rights reserved.