About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2010 (2010), Article ID 715872, 14 pages
http://dx.doi.org/10.1155/2010/715872
Research Article

Critical Analysis on the Structural and Magnetic Properties of Bulk and Nanocrystalline Cu-Fe-O

1Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025, India
2Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
3Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199, USA
4Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA

Received 1 November 2010; Accepted 16 December 2010

Academic Editor: Jacques Huot

Copyright © 2010 D. Paul Joseph et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Rode, A. Anane, R. Mattana, J. P. Contour, O. Durand, and R. LeBourgeois, “Magnetic semiconductors based on cobalt substituted ZnO,” Journal of Applied Physics, vol. 93, no. 10, pp. 7676–7678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. V. Radovanovic and D. R. Gamelin, “High-temperature ferromagnetism in Ni-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots,” Physical Review Letters, vol. 91, no. 15, Article ID 157202, 4 pages, 2003. View at Scopus
  3. D. P. Joseph, G. S. Kumar, and C. Venkateswaran, “Structural, magnetic and optical studies of Zn0.95Mn0.05O DMS,” Materials Letters, vol. 59, no. 21, pp. 2720–2724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Matsumoto, M. Murakami, T. Shono et al., “Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide,” Science, vol. 291, no. 5505, pp. 854–856, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Ogale, R. J. Choudhary, J. P. Buban et al., “High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO2-δ,” Physical Review Letters, vol. 91, no. 7, Article ID 077205, 4 pages, 2003. View at Scopus
  6. T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, K. S. Teng, and J. S. Chen, “Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing,” Journal of Physics: Condensed Matter, vol. 19, Article ID 356214, 2007.
  7. S. Deka and P. A. Joy, “Synthesis and magnetic properties of Mn doped ZnO nanowires,” Solid State Communications, vol. 142, no. 4, pp. 190–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, vol. 281, no. 5379, pp. 951–956, 1998. View at Scopus
  9. K. Sato and H. Katayama-Yoshida, “Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO,” Japanese Journal of Applied Physics, vol. 40, no. 4, pp. L334–L336, 2001. View at Scopus
  10. D. P. Joseph, S. Naveenkumar, N. Sivakumar, and C. Venkateswaran, “Synthesis of Zn0.95Cr0.05O DMS by co-precipitation and ceramic methods: structural and magnetization studies,” Materials Chemistry and Physics, vol. 97, no. 1, pp. 188–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Fukumura, Y. Yamada, K. Tamura et al., “Magneto-optical spectroscopy of anatase TiO2 doped with Co,” Japanese Journal of Applied Physics, vol. 42, no. 2, pp. L105–L107, 2003. View at Scopus
  12. Ü. Özgür, Ya. I. Alivov, C. Liu et al., “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, no. 4, Article ID 041301, 103 pages, 2005. View at Publisher · View at Google Scholar
  13. K. Ando, H. Saito, Z. Jin et al., “Magneto-optical properties of ZnO-based diluted magnetic semiconductors,” Journal of Applied Physics, vol. 89, no. 11, pp. 7284–7286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Dal, H. A. Mook, G. Aeppll, S. M. Hayden, and F. Doǧan, “Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6,” Nature, vol. 406, no. 6799, pp. 965–968, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. L. Carnes and K. J. Klabunde, “The catalytic methanol synthesis over nanoparticle metal oxide catalysts,” Journal of Molecular Catalysis A: Chemical, vol. 194, no. 1-2, pp. 227–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns, “CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors,” Sensors and Actuators B: Chemical, vol. 65, no. 1, pp. 379–381, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. G. Smith, R. D. Taylor, M. P. Pasternak, and H. Oesterreicher, “Mössbauer spectroscopy of CuO and its relevance to high-temperature superconductors,” Physical Review B, vol. 42, no. 4, pp. 2188–2192, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Shah and A. Gupta, “Mössbauer study of iron-doped CuO,” Physical Review B, vol. 45, no. 1, pp. 483–485, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Ogale, P. G. Bilurkar, S. Joshi, and G. Marest, “Ion57 implantation in laser-deposited cupric and cuprous oxide films: Mössbauer spectroscopy and X-ray-diffraction studies,” Physical Review B, vol. 50, no. 14, pp. 9743–9751, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Gupta and P. Shah, “Effect of oxygen stoichiometry in CuO,” Physical Review B, vol. 50, no. 18, pp. 13706–13709, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Stewart, G. F. Goya, G. Punte, and R. C. Mercader, “Phase transformations in Fe-doped cupric oxide,” Journal of Physics and Chemistry of Solids, vol. 58, no. 1, pp. 73–77, 1997. View at Scopus
  22. S. G. Yang, T. Li, B. X. Gu et al., “Ferromagnetism in Mn-doped CuO,” Applied Physics Letters, vol. 83, no. 18, pp. 3746–3748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Borzi, S. J. Stewart, G. Punte et al., “Effect of ion doping on CuO magnetism,” Journal of Applied Physics, vol. 87, no. 9, pp. 4870–4872, 2000. View at Scopus
  24. Y. R. Park, K. J. Kim, S. L. Choi et al., “Ferromagnetism in Fe-doped cupric oxide,” Physica Status Solidi B, vol. 244, no. 12, pp. 4578–4581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ivill, M. E. Overberg, C. R. Abernathy et al., “Properties of Mn-doped CuO semiconducting thin films grown by pulsed-laser deposition,” Solid-State Electronics, vol. 47, no. 12, pp. 2215–2220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Tanaka, “Optical constants of polycrystalline 3d transition metal. Oxides in the wavelength region 350 to 1200 nm,” Japanese Journal of Applied Physics, vol. 18, no. 6, pp. 1043–1047, 1979.
  27. Y. Ushio, M. Miyayama, and H. Yanagida, “Photoinduced current of CuO/ZnO thin-film heterojunction in humid atmosphere,” Japanese Journal of Applied Physics, vol. 33, no. 2, pp. 1136–1139, 1994. View at Scopus
  28. D. H. Yoon, J. H. Yu, and G. M. Choi, “CO gas sensing properties of ZnO-CuO composite,” Sensors and Actuators B, vol. 46, no. 1, pp. 15–23, 1998.
  29. S. N. Kale, S. B. Ogale, S. R. Shinde et al., “Magnetism in cobalt-doped CuO thin films without and with Al, V, or Zn codopants,” Applied Physics Letters, vol. 82, no. 13, pp. 2100–2102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. P. Joseph, T. P. David, S. P. Raja, and C. Venkateswaran, “Phase stabilization and characterization of nanocrystalline Fe-doped Cu2O,” Materials Characterization, vol. 59, no. 8, pp. 1137–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Wang, O. K. Varghese, C. Ruan, M. Paulose, and C. A. Grimes, “Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates,” Journal of Materials Research, vol. 18, no. 12, pp. 2756–2759, 2003. View at Scopus
  32. L. Lutterotti, “MAUD materials analysis using diffraction version:1.84,” 2002, http://www.ing.unitn.it/~maud/.
  33. N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, “The equation of state of platinum to 660 GPa (6.6 Mbar),” Journal of Applied Physics, vol. 66, no. 7, pp. 2962–2967, 1989. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Larson and R. B. von Dreele, “General Structure Analysis System (GSAS),” National Laboratory Report LAUR 86-748, 2004.
  35. B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” Journal of Applied Crystallography, vol. 34, no. 2, pp. 210–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. L. C. Bourne, P. Y. Yu, A. Zettl, and M. L. Cohen, “High-pressure electrical conductivity measurements in the copper oxides,” Physical Review B, vol. 40, no. 16, pp. 10973–10976, 1989. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Malinowski, S. Asbrink, and A. Kvick, “A high-pressure single-crystal X-ray diffraction study of copper oxide using synchrotron radiation,” High Pressure Research, vol. 4, no. 1, pp. 429–431, 1990. View at Publisher · View at Google Scholar
  38. H. Ehrenberg, J. A. McAllister, W. G. Marshall, and J. P. Attfield, “Compressibility of copper-oxygen bonds: a high-pressure neutron powder diffraction study of CuO,” Journal of Physics Condensed Matter, vol. 11, no. 34, pp. 6501–6508, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Wang, V. Pischedda, S. K. Saxena, and P. Lazor, “X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures,” Solid State Communications, vol. 121, no. 5, pp. 275–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Minomura and H. G. Drickamer, “Effect of pressure on the electrical resistance of some transition-metal oxides and sulfides,” Journal of Applied Physics, vol. 34, no. 10, pp. 3043–3048, 1963. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Reimann and K. Syassen, “Pressure dependence of Raman modes in CuO,” Solid State Communications, vol. 76, no. 2, pp. 137–140, 1990. View at Scopus
  42. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philosophical Transactions of the Royal Society A, vol. 240, pp. 599–642, 1948. View at Publisher · View at Google Scholar
  43. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Philippines, Pa, USA, 1972.
  44. A. P. Douvalis, L. Jankovic, and T. Bakas, “The origin of ferromagnetism in 57Fe-doped NiO,” Journal of Physics Condensed Matter, vol. 19, no. 43, Article ID 436203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, “Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles,” Physical Review B, vol. 64, no. 17, Article ID 174420, 8 pages, 2001. View at Scopus
  46. W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Physical Review, vol. 105, no. 3, pp. 904–913, 1957. View at Publisher · View at Google Scholar · View at Scopus
  47. T. I. Arbuzova, A. A. Samokhvalov, I. B. Smolyak, B. V. Karpenko, N. M. Chebotaev, and S. V. Naumov, “Temperature transition from 3D to quasi-1D antiferromagnetism in CuO single crystals,” Journal of Magnetism and Magnetic Materials, vol. 95, no. 2, pp. 168–174, 1991. View at Scopus
  48. S. Cardoso, Z. Zhang, H. Li et al., “Characterization of nano-oxide layers fabricated by ion beam oxidation,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 2755–2757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Toyosaki, T. Fukumura, K. Ueno, M. Nakano, and M. Kawasaki, “A ferromagnetic oxide semiconductor as spin injection electrode in magnetic tunnel junction,” Japanese Journal of Applied Physics, vol. 44, no. 28, pp. L896–L898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. X. W. Li, A. Gupta, G. Xiao, W. Qian, and V. P. Dravid, “Fabrication and properties of heteroepitaxial magnetite (FeO) tunnel junctions,” Applied Physics Letters, vol. 73, no. 22, pp. 3282–3284, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. P. A. A. van der Heijden, P. J. H. Bloemen, J. M. Metselaar et al., “Interlayer coupling between FeO layers separated by an insulating nonmagnetic MgO layer,” Physical Review B, vol. 55, no. 17, pp. 11569–11575, 1997. View at Scopus
  52. P. J. van der Zaag, P. J. H. Bloemen, J. M. Gaines et al., “On the construction of an Fe3O4-based all-oxide spin valve,” Journal of Magnetism and Magnetic Materials, vol. 211, no. 1, pp. 301–308, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Hu, R. Chopdekar, and Y. Suzuki, “Observation of inverse magnetoresistance in epitaxial magnetite/manganite junctions,” Journal of Applied Physics, vol. 93, no. 10, pp. 7516–7518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. B. Alldredge, R. V. Chopdekar, B. B. Nelson-Cheeseman, and Y. Suzuki, “Complex oxide-based magnetic tunnel junctions with nonmagnetic insulating barrier layers,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08K303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Fix, D. Stoeffler, Y. Henry et al., “Diode effect in all-oxide Sr2FeMoO6-based magnetic tunnel junctions,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08J107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Bertotti, Hysteresis in Magnetism, chapter 10, 11, Academic Press, New York, NY, USA, 1998.
  57. V. Raghavan, Materials Science and Engineering, Prentice-Hall, New Delhi, India, 3rd edition, 1995.