About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 124820, 6 pages
http://dx.doi.org/10.1155/2012/124820
Research Article

Optical and Physical Properties of Methyltrimethoxysilane Transparent Film Incorporated with Nanoparticles

Corrosion and Coating Laboratory, Department of Physics, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Received 29 October 2012; Revised 9 December 2012; Accepted 9 December 2012

Academic Editor: Wen-Hua Sun

Copyright © 2012 W. Ahliah Ismail et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Venkateswara Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” Journal of Non-Crystalline Solids, vol. 285, no. 1, pp. 202–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. B. J. Privett, J. Youn, S. A. Hong et al., “Antibacterial fluorinated silica colloid superhydrophobic surfaces,” Langmuir, vol. 27, no. 15, pp. 9597–9601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. V. V. Ganbavle, U. K. H. Bangi, S. S. Latthe, S. A. Mahadik, and A. V. Rao, “Self-cleaning silica coatings on glass by single step sol-gel route,” Surface and Coatings Technology, vol. 205, no. 23-24, pp. 5338–5344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Banger, Y. Yamashita, K. Mori, et al., “Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a “sol-gel on chip” process,” Nature Materials, vol. 10, no. 1, pp. 45–50, 2010.
  5. D. Y. Nadargi, S. S. Latthe, and A. Venkateswara Rao, “Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol-gel process,” Journal of Sol-Gel Science and Technology, vol. 49, no. 1, pp. 53–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Agrawal and J. P. Cronin, “The merits of Sol-Gel processing for electrochromic windows: a commercial perspective,” Sol-Gel Processing for Conventional and Alternative Energy, pp. 275–291, 2012.
  7. A. Cannavale, F. Fiorito, M. Manca, G. Tortorici, R. Cingolani, and G. Gigli, “Multifunctional bioinspired sol-gel coatings for architectural glasses,” Building and Environment, vol. 45, no. 5, pp. 1233–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea, and A. Aranzabe, “Development of multifunctional sol-gel coatings: anti-reflection coatings with enhanced self-cleaning capacity,” Solar Energy Materials and Solar Cells, vol. 94, no. 6, pp. 1081–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ilican, Y. Caglar, M. Caglar, and F. Yakuphanoglu, “Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol-gel process,” Applied Surface Science, vol. 255, no. 5, pp. 2353–2359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Wang and G. P. Bierwagen, “Sol-gel coatings on metals for corrosion protection,” Progress in Organic Coatings, vol. 64, no. 4, pp. 327–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Avci, P. F. Smet, J. Lauwaert, H. Vrielinck, and D. Poelman, “Optical and structural properties of aluminium oxide thin films prepared by a non-aqueous sol-gel technique,” Journal of Sol-Gel Science and Technology, vol. 59, no. 2, pp. 327–333, 2011.
  12. D. Fregonese and F. Costa, “Sol gel process for producing protective films for polymeric substrates,” EP patent 1,935, 929, 2011.
  13. O. Bunkoed, F. Davis, P. Kanatharana, P. Thavarungkul, and S. P. J. Higson, “Sol-gel based sensor for selective formaldehyde determination,” Analytica Chimica Acta, vol. 659, no. 1-2, pp. 251–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. B. Lee, I. C. Jang, H. H. Lim, V. Aravindan, H. S. Kim, and Y. S. Lee, “Preparation and electrochemical characterization of LiFePO4 nanoparticles with high rate capability by a sol-gel method,” Journal of Alloys and Compounds, vol. 491, no. 1-2, pp. 668–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Tsai, J. C. Chang, H. S. Sheu, H. T. Chiu, and C. Y. Lee, “Lithium ion intercalation performance of porous laminal titanium dioxides synthesized by sol-gel process,” Chemistry of Materials, vol. 21, no. 3, pp. 499–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Zhou, R. Ran, Z. Shao, W. Jin, and N. Xu, “Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process,” Bulletin of Materials Science, vol. 33, no. 4, pp. 371–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Farrington and F. Regan, “Molecularly imprinted sol gel for ibuprofen: an analytical study of the factors influencing selectivity,” Talanta, vol. 78, no. 3, pp. 653–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, 1990.
  19. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, 2011.