About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 185905, 5 pages
http://dx.doi.org/10.1155/2012/185905
Research Article

The Relationship between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren’ai Road, Industrial Park, Suzhou 215123, China

Received 6 June 2012; Accepted 16 July 2012

Academic Editor: Amit Bandyopadhyay

Copyright © 2012 Yongpei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 991–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, “Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40517–40528, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, “Biodegradation of bombyx mori silk fibroin fibers and films,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2383–2390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Valluzzi, S. P. Gido, W. Muller, and D. L. Kaplan, “Orientation of silk III at the air-water interface,” International Journal of Biological Macromolecules, vol. 24, no. 2-3, pp. 237–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Moy, A. Lee, and A. Zalka, “Commonly used suture materials in skin surgery,” American Family Physician, vol. 44, no. 6, pp. 2123–2128, 1991. View at Scopus
  6. N. Minoura, S. I. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, “Attachment and growth of cultured fibroblast cells on silk protein matrices,” Journal of Biomedical Materials Research, vol. 29, no. 10, pp. 1215–1221, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Unger, K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C. J. Kirkpatrick, “Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells,” Biomaterials, vol. 25, no. 21, pp. 5137–5146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Y. Luan, Y. Wang, X. Duan et al., “Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated Antheraea pernyi silk fibroin films,” Biomedical Materials, vol. 1, no. 4, pp. 181–187, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Lu, X. Hu, X. Wang et al., “Water-insoluble silk films with silk I structure,” Acta Biomaterialia, vol. 6, no. 4, pp. 1380–1387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Li, M. Ogiso, and N. Minoura, “Enzymatic degradation behavior of porous silk fibroin sheets,” Biomaterials, vol. 24, no. 2, pp. 357–365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Q. Yan, C. X. Zhao, X. F. Wu, Q. Zhang, and M. Z. Li, “Gelation behavior of Antheraea pernyi silk fibroin,” Science China Chemistry, vol. 53, no. 3, pp. 535–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Schneider, X. Y. Wang, D. L. Kaplan, J. A. Garlick, and C. Egles, “Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing,” Acta Biomaterialia, vol. 5, no. 7, pp. 2570–2578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Meinel, R. Fajardo, S. Hofmann et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Soffer, X. Wang, X. Zhang et al., “Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts,” Journal of Biomaterials Science, vol. 19, no. 5, pp. 653–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Uebersax, H. P. Merkle, and L. Meinel, “Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells,” Journal of Controlled Release, vol. 127, no. 1, pp. 12–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. W. Lloyd, “Interfacial bioengineering to enhance surface biocompatibility,” Medical device technology, vol. 13, no. 1, pp. 18–21, 2002. View at Scopus
  17. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  18. Y. Wang, D. D. Rudym, A. Walsh et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24-25, pp. 3415–3428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yang, Y. Zhao, Y. Gu et al., “Degradation behaviors of nerve guidance conduits made up of silk fibroin in vitro and in vivo,” Polymer Degradation and Stability, vol. 94, no. 12, pp. 2213–2220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Taddei, T. Arai, A. Boschi, P. Monti, M. Tsukada, and G. Freddi, “In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin,” Biomacromolecules, vol. 7, no. 1, pp. 259–267, 2006. View at Publisher · View at Google Scholar · View at Scopus