About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 303014, 7 pages
http://dx.doi.org/10.1155/2012/303014
Research Article

Effects of Aging Temperature on Moisture Absorption of Perforated GFRP

Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada B3H 4R2

Received 1 November 2011; Revised 12 December 2011; Accepted 12 December 2011

Academic Editor: Luigi Nicolais

Copyright © 2012 Shiva Eslami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Schutte, “Environmental durability of glass-fiber composites,” Materials Science and Engineering R, vol. 13, no. 7, pp. 265–323, 1994. View at Scopus
  2. G. Alawsi, S. Aldajah, and S. A. Rahmaan, “Impact of humidity on the durability of E-glass/polymer composites,” Materials and Design, vol. 30, no. 7, pp. 2506–2512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Ellyin and C. Rohrbacher, “Effect of aqueous environment and temperature on glass-fibre epoxy resin composites,” Journal of Reinforced Plastics and Composites, vol. 19, no. 17, pp. 1405–1427, 2000. View at Publisher · View at Google Scholar
  4. D. Perreux and C. Suri, “A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes,” Composites Science and Technology, vol. 57, no. 9-10, pp. 1403–1413, 1997.
  5. G. Sala, “Composite degradation due to fluid absorption,” Composites, B, vol. 31, no. 5, pp. 357–373, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. F. Boukhoulda, E. Adda-Bedia, and K. Madani, “The effect of fiber orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing,” Composite Structures, vol. 74, no. 4, pp. 406–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. R. Bao and A. F. Yee, “Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II-woven and hybrid composites,” Composites Science and Technology, vol. 62, no. 16, pp. 2111–2119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Assarar, D. Scida, A. El Mahi, C. Poilâne, and R. Ayad, “Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax-fibres and glass-fibres,” Materials and Design, vol. 32, no. 2, pp. 788–795, 2011. View at Publisher · View at Google Scholar
  9. G. Huang and H. Sun, “Effect of water absorption on the mechanical properties of glass/polyester composites,” Materials and Design, vol. 28, no. 5, pp. 1647–1650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Maxwell, W. R. Broughton, G. Dean, and G. D. Sims, “Review of accelerated aging methods and lifetime prediction techniques for polymeric materials,” NLP Report DEPC MPR 016, 2005.
  11. P. K. Aditya and P. K. Sinha, “Moisture diffusion in variously shaped fibre reinforced composites,” Computers and Structures, vol. 59, no. 1, pp. 157–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Imielińska and L. Guillaumat, “The effect of water immersion ageing on low-velocity impact behaviour of woven aramid-glass fibre/epoxy composites,” Composites Science and Technology, vol. 64, no. 13-14, pp. 2271–2278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Scida, Z. Aboura, and M. L. Benzeggagh, “The effect of ageing on the damage events in woven-fibre composite materials under different loading conditions,” Composites Science and Technology, vol. 62, no. 4, pp. 551–557, 2002. View at Publisher · View at Google Scholar
  14. A. Nakai, S. Ikegaki, H. Hamada, and N. Takeda, “Degradation of briaded composites in hot water,” Composites Science and Technology, vol. 60, no. 3, pp. 325–331, 2000.
  15. F. Ellyin and R. Maser, “Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens,” Composites Science and Technology, vol. 64, no. 12, pp. 1863–1874, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Berketis, D. Tzetzis, and P. J. Hogg, “The influence of long term water immersion ageing on impact damage behaviour and residual compression strength of glass fibre reinforced polymer (GFRP),” Materials and Design, vol. 29, no. 7, pp. 1300–1310, 2008. View at Publisher · View at Google Scholar
  17. G. S. Springer, Environmental Effects on Composite Materials, vol. 3, Chapter 1, Technomic, Lancaster, Pa, USA, 1981.
  18. J. R. M. d'Almeida, R. C. de Almeida, and W. R. de Lima, “Effect of water absorption of the mechanical behavior of fiberglass pipes used for offshore service waters,” Composite Structures, vol. 83, no. 2, pp. 221–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Akay, S. Kong Ah Mun, and A. Stanley, “Influence of moisture on the thermal and mechanical properties of autoclaved and oven-cured Kevlar-49/epoxy laminates,” Composites Science and Technology, vol. 57, no. 5, pp. 565–571, 1997. View at Scopus
  20. ASTM D3171-09, Standard Test Methods for Constituent Content of Composite Materials.
  21. ASTM D5229, Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials.
  22. O. De La Osa, V. Alvarez, and A. Avazquez, “Effect of hygrothermal history on water and mechanical properties of glass/vinylester composites,” Journal of Composite Materials, vol. 40, no. 22, pp. 2009–2023, 2006. View at Publisher · View at Google Scholar