About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 418729, 9 pages
http://dx.doi.org/10.1155/2012/418729
Research Article

Rock Mechanical Property Influenced by Inhomogeneity

State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Shandong, Qingdao 266590, China

Received 26 March 2012; Revised 6 April 2012; Accepted 10 April 2012

Academic Editor: Amit Bandyopadhyay

Copyright © 2012 Yunliang Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. J. Wei and L. Anand, “Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals,” Journal of the Mechanics and Physics of Solids, vol. 52, no. 11, pp. 2587–2616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Zabler, A. Rack, I. Manke et al., “High-resolution tomography of cracks, voids and micro-structure in greywacke and limestone,” Journal of Structural Geology, vol. 30, no. 7, pp. 876–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. Xie and F. Gao, “The mechanics of cracks and a statistical strength theory for rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 3, pp. 477–488, 2000. View at Scopus
  4. Y. Guéguen, T. Chelidze, and M. Le Ravalec, “Microstructures, percolation thresholds, and rock physical properties,” Tectonophysics, vol. 279, no. 1–4, pp. 23–35, 1997. View at Scopus
  5. T. I. Chichinina and I. R. Obolentseva, “Seismic gyrotropy as a result of rock-microstructure dissymmetry,” Theoretical and Applied Fracture Mechanics, vol. 30, no. 3, pp. 251–265, 1998. View at Scopus
  6. G. E. Exadaktylos and I. Vardoulakis, “Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics,” Tectonophysics, vol. 335, no. 1-2, pp. 81–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. B. Nasseri and B. Mohanty, “Fracture toughness anisotropy in granitic rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 2, pp. 167–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Takadoum and H. Houmid Bennani, “Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films,” Surface and Coatings Technology, vol. 96, no. 2-3, pp. 272–282, 1997. View at Scopus
  9. M. H. Nasseri, K. S. Rao, and T. Ramamurthy, “Failure mechanism in schistose rocks,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 34, no. 3-4, p. 460, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Raynaud, G. Vasseur, B. Célérier et al., “Experimental study of the relation between the permeability of kaolinite and its deformation at micro and macro scale,” International Journal of Rock Mechanics and Mining Sciences, vol. 47, no. 4, pp. 559–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Alkan, “Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 716–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. I. Chichinina and I. R. Obolentseva, “Seismic gyrotropy as a result of rock-microstructure dissymmetry,” Theoretical and Applied Fracture Mechanics, vol. 30, no. 3, pp. 251–265, 1998. View at Scopus
  13. B. B. Mandelbrot, Fractal Geometry of Nature, Freeman, San Francisco, Calif, USA, 1982.
  14. A. P. Pentland, “Fractal-based description of natural science,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 661–674, 1984. View at Scopus
  15. J. J. Gagnepain and C. Roques-Carmes, “Fractal approach to two-dimensional and three-dimensional surface roughness,” Wear, vol. 109, no. 1–4, pp. 119–126, 1986. View at Scopus
  16. J. M. Keller, S. Chen, and R. M. Crownover, “Texture description and segmentation through fractal geometry,” Computer Vision, Graphics and Image Processing, vol. 45, no. 2, pp. 150–166, 1989. View at Scopus
  17. N. Sarkar and B. B. Chauduri, “Efficient differential box-counting approach to compute fractal dimension of image,” IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 1, pp. 115–120, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. A. K. Bisoi and J. Mishra, “On calculation of fractal dimension of images,” Pattern Recognition Letters, vol. 22, no. 6-7, pp. 631–637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Pickover and A. Khorasani, “Fractal characterization of speech waveform graphs,” Computers and Graphics, vol. 10, no. 1, pp. 51–61, 1986. View at Scopus
  20. S. S. Chen, J. M. Keller, and R. M. Crownover, “On the calculation of fractal features from images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1087–1090, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Sarkar and B. B. Chaudhuri, “An efficient approach to estimate fractal dimension of textural images,” Pattern Recognition, vol. 25, no. 9, pp. 1035–1041, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ge and S. Suo, “Computation methods for fractal dimension of surface profile,” Mocaxue Xuebao/Tribology, vol. 17, no. 4, pp. 354–362, 1997. View at Scopus
  23. L. He and J. Zhu, “The fractal character of processed metal surfaces,” Wear, vol. 208, no. 1-2, pp. 17–24, 1997. View at Scopus
  24. C. Q. Yuan, J. Li, X. P. Yan, and Z. Peng, “The use of the fractal description to characterize engineering surfaces and wear particles,” Wear, vol. 255, no. 1–6, pp. 315–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Yue, “Digital representation of meso-geomaterial spatial distribution and associated numerical analysis of geomechanics: methods, applications and developments,” Chinese Journal of Rock Mechanics and Engineering, vol. 25, no. 5, pp. 875–888, 2006. View at Scopus
  26. C. X. Chen, X. M. Liu, and C. H. Liu, “Application of digital image processing to rock mesomechanics,” Rock and Soil Mechanics, vol. 31, no. 1, pp. 53–61, 2010. View at Scopus
  27. Y. L. Tan, C. X. Liu, and T. B. Zhao, Elementary Theory for Rock Nonlinear Dynamics, Coal Industry Publishing House, Beijing, China, 2008.
  28. V. Hucka and B. Das, “Brittleness determination of rocks by different methods,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 11, no. 10, pp. 389–392, 1974. View at Scopus
  29. Q. M. Gong and J. Zhao, “Influence of rock brittleness on TBM penetration rate in Singapore granite,” Tunnelling and Underground Space Technology, vol. 22, no. 3, pp. 317–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. George, Brittle Failure of Rock Material-Test Results and Constitutive Models, A.A. Balkema Publishers, Rotterdam, The Netherlands, 1995.
  31. A. A. Vihtuk, “Determination of strength of solid porous body,” Acta Physica Polonica A, vol. 93, pp. S-71–S-78, 1998. View at Scopus
  32. S. Kahraman, “Correlation of TBM and drilling machine performances with rock brittleness,” Engineering Geology, vol. 65, no. 4, pp. 269–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Protodyakonov, “Mechanical properties and drillability of rocks,” in Proceedings of the 5th Symposium Rock Mechanics, pp. 103–118, University of Minnesota, 1963.