About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 728472, 4 pages
http://dx.doi.org/10.1155/2012/728472
Research Article

Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

Received 13 June 2012; Revised 6 August 2012; Accepted 6 August 2012

Academic Editor: Wen-Hua Sun

Copyright © 2012 Lili Ren and Jin Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Doherty, “A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 2-Trichloroethylene and 1, 1, 1-trichloroethane,” Environmental Forensics, vol. 1, no. 2, pp. 83–93, 2000. View at Publisher · View at Google Scholar
  2. A. L. Hines, T. K. Ghosh, S. K. Loyalka, and R. C. Warder, Indoor Air Quality and Control, Prentice Hall, Englewood Cliffs, NJ, USA, 1993.
  3. N. S. Babu, N. Lingaiah, and P. S. S. Prasad, “Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene,” Applied Catalysis B, vol. 111-112, pp. 309–3316, 2012.
  4. A. Musialik-Piotrowska, “Destruction of trichloroethylene (TCE) and trichloromethane (TCM) in the presence of selected VOCs over Pt-Pd-based catalyst,” Catalysis Today, vol. 119, no. 1–4, pp. 301–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. F. D. Kopinke, D. Angeles-Wedler, D. Fritsch, and K. Mackenzie, “Pd-catalyzed hydrodechlorination of chlorinated aromatics in contaminated waters-effects of surfactants, organic matter and catalyst protection by silicone coating,” Applied Catalysis B, vol. 96, no. 3-4, pp. 323–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Zhou, Y. Li, and T. Lim, “Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism,” Separation and Purification Technology, vol. 76, pp. 206–214, 2010. View at Publisher · View at Google Scholar
  7. R. Cheng, W. Zhou, J. Wang et al., “Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect,” Journal of Hazardous Materials, vol. 180, pp. 79–785, 2010. View at Publisher · View at Google Scholar
  8. S. Ordóñez, E. Díaz, R. F. Bueres, E. Asedegbega-Nieto, and H. Sastre, “Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts,” Journal of Catalysis, vol. 272, no. 1, pp. 158–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Manion, P. Mulder, and R. Louw, “Gas-phase hydrogenolysis of polychlorobiphenyls,” Environmental Science and Technology, vol. 19, no. 3, pp. 280–282, 1985. View at Scopus
  10. R. Louw, J. W. Rothuizen, and R. C. C. Wegman, “Vapour phase chemistry of arenes. Part II. Thermolysis of chlorobenzene and reactions with aryl radicals and chlorine and hydrogen atoms at 500°,” Journal of the Chemical Society, no. 12, pp. 1635–1640, 1973. View at Scopus
  11. C. Amorim and M. A. Keane, “Catalytic hydrodechlorination of chloroaromatic gas streams promoted by Pd and Ni: the role of hydrogen spillover.,” Journal of Hazardous Materials, vol. 211-212, pp. 208–217, 2012.
  12. T. N. Kalnes and R. B. James, “Hydrogenation and recycle of organic waste streams,” Environmental Progress, vol. 7, pp. 185–191, 1988.
  13. H. Takashima, L. Ren, and Y. Kanno, “Catalytic decomposition of TCE under microwave,” Catalysis Communications, vol. 5, pp. 317–319, 2004. View at Publisher · View at Google Scholar
  14. H. Takashima, M. Karches, and Y. Kanno, “Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating,” Applied Surface Science, vol. 254, no. 7, pp. 2023–2030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Varma, D. Sheu, B. J. Wood, and G. N. Krishnan, “Dctoxification of trichioroethylene,” EPRI Project Report RP8000-45, 1990.
  16. L. Ren and X. Pan, “Catalysts used for microwave-assisted TCE decomposition by hydrogen,” Catalysis Communications, vol. 12, pp. 1366–1369, 2011.
  17. N. Barrabes, D. Cornado, K. Foettinger et al., “Hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derived catalysts,” Journal of Catalysis, vol. 263, no. 2, pp. 239–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. P. Mingos and D. R. Baghurst, “Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry,” Chemical Society Reviews, vol. 20, pp. 1–47, 1991. View at Publisher · View at Google Scholar
  19. J. R. Thomas Jr. and F. Faucher, “Thermal modeling of microwave heated packed and fluidized bed catalytic reactors,” Journal of Microwave Power and Electromagnetic Energy, vol. 35, pp. 165–174, 2000.
  20. K. Takehira and T. Shishido, “Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg–Al hydrotalcite-like anionic clay,” Journal of Catalysis, vol. 221, pp. 43–54, 2004. View at Publisher · View at Google Scholar
  21. Q. Jing, H. Lou, L. Mo, and X. Zheng, “Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas,” Energy Conversion and Management, vol. 47, pp. 459–469, 2006. View at Publisher · View at Google Scholar
  22. S. Ma, Y. Wang, N. Shah, and G. P. Huffman, “Catalytic methane decomposition using a fluidized bed reactor for hydrogen production,” Preprints of Papers—American Chemical Society Division of Fuel Chemistry Preprints, vol. 50, pp. 636–637, 2005.
  23. C. Lin, T. Peng, and W. Wang, “Effect of particle size distribution on agglomeration/defluidization during fluidized bed combustion,” Powder Technology, vol. 207, pp. 290–295, 2011.
  24. S. Jašo, H. Arellano-Garcia, and G. Wozny, “Oxidative coupling of methane in a fluidized bed reactor: influence of feeding policy, hydrodynamics, and reactor geometry,” Chemical Engineering Journal, vol. 171, no. 1, pp. 255–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Subramanian, A. Sampathrajan, and P. Venkatachalam, “Fluidized bed gasification of select granular biomaterials,” Bioresource Technology, vol. 102, no. 2, pp. 1914–1920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. I. Goksu, G. Sumnu, and A. Esin, “Effect of microwave on fluidized bed drying of macaroni beads,” Journal of Food Engineering, vol. 66, no. 4, pp. 463–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Varith, P. Dijkanarukkul, A. Achariyaviriya, and S. Achariyaviriya, “Combined microwave-hot air drying of peeled longan,” Journal of Food Engineering, vol. 81, no. 2, pp. 459–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Sangdao and M. Krairiksh, “Analysis of a continuous fluidised-bed microwave rice kernel drying system,” Maejo Ational Journal of Science and Technology, vol. 1, pp. 61–71, 2008.