About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 754142, 8 pages
http://dx.doi.org/10.1155/2012/754142
Research Article

Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

1Department of Architecture, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Infrastructure Engineering, The Univeristy of Melbourne, Melbourne, VIC 3010, Australia
3Department of Civil and Industrial Construction, University of Civil Engineering, Ha Noi 100000, Vietnam

Received 4 June 2012; Revised 16 August 2012; Accepted 18 August 2012

Academic Editor: Luigi Nicolais

Copyright © 2012 S. N. Raman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE) code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.