About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 754142, 8 pages
http://dx.doi.org/10.1155/2012/754142
Research Article

Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

1Department of Architecture, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Infrastructure Engineering, The Univeristy of Melbourne, Melbourne, VIC 3010, Australia
3Department of Civil and Industrial Construction, University of Civil Engineering, Ha Noi 100000, Vietnam

Received 4 June 2012; Revised 16 August 2012; Accepted 18 August 2012

Academic Editor: Luigi Nicolais

Copyright © 2012 S. N. Raman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Buchan and J. F. Chen, “Blast resistance of FRP composites and polymer strengthened concrete and masonry structures—a state-of-the-art review,” Composites Part B: Engineering, vol. 38, no. 5-6, pp. 509–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. J. Malvar, J. E. Crawford, and K. B. Morrill, “Use of composites to resist blast,” Journal of Composites for Construction, vol. 11, no. 6, pp. 601–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. L. C. Muszynski and M. R. Purcell, “Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast,” Journal of Composites for Construction, vol. 7, no. 2, pp. 98–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Tolba, Response of FRP-retrofitted reinforced concrete panels to blast loading [Ph.D. thesis], Charleton University, Ottawa, Canada, 2001.
  5. G. Tanapornraweekit, Behaviour of fibre reinforced polymer (FRP) strengthened RC slabs subjected to blast loading [Ph.D. thesis], Department of Civil and Environmental Engineering, The University of Melbourne, Melbourne, Australia, 2010.
  6. G. Tanapornraweekit, N. Haritos, P. Mendis, and T. Ngo, “Finite element simulation of FRP strengthened reinforced concrete slabs under two independent air blasts,” International Journal of Protective Structures, vol. 1, no. 4, pp. 469–488, 2010.
  7. G. Tanapornraweekit, N. Haritos, T. Ngo, and P. Mendis, “Behaviour of FRP-RC slabs under two independent air blasts,” in Proceedings of the 8th International Conference on Shock and Impact Loads on Structures, pp. 609–618, Adelaide, Australia, 2009.
  8. A. Remennikov and D. Carolan, “High performance retrofit solutions for blast protection of facades in office buildings,” in Proceedings of the RNSA Security Technology Conference, pp. 44–54, Melbourne, Australia, 2007.
  9. K. J. Knox, M. I. Hammons, T. T. Lewis, and J. R. Porter, Polymer Materials for Structural Retrofit, Florida: Force Protection Branch, Air Expeditionary Forces Technology Division, Air Force Research Laboratory, Tyndall AFB, 2007.
  10. J. S. Davidson, J. R. Porter, R. J. Dinan, M. I. Hammons, and J. D. Connell, “Explosive testing of polymer retrofit masonry walls,” Journal of Performance of Constructed Facilities, vol. 18, no. 2, pp. 100–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Davidson, J. W. Fisher, M. I. Mammons, J. R. Porter, and R. J. Dinan, “Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast,” Journal of Structural Engineering, vol. 131, no. 8, pp. 1194–1205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Baylot, B. Bullock, T. R. Slawson, and S. C. Woodson, “Blast response of lightly attached concrete masonry unit walls,” Journal of Structural Engineering, vol. 131, no. 8, pp. 1186–1193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Amini, J. B. Isaacs, and S. Nemat-Nasser, “Effect of polyurea on the dynamic response of steel plates,” in Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, pp. 1323–1326, St. Louis, Mo, USA, June 2006. View at Scopus
  14. M. R. Amini, J. B. Isaacs, and S. Nemat-Nasser, “Experimental investigation of response of monolithic and bilayer plates to impulsive loads,” International Journal of Impact Engineering, vol. 37, no. 1, pp. 82–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ackland, C. Anderson, and N. St John, “Polymeric coatings for enhanced protection of structures from the explosive effects of blast,” in Proceedings of the RNSA Security Technology Conference, pp. 90–96, Melbourne, Australia, 2007.
  16. LS-DYNA, “LS-DYNA Keyword User's Manual, Version 971,” 2007, Livermore Software Technology Corporation (LSTC), Livermore, Calif, USA.
  17. J. E. Crawford and L. J. Malvar, “User’s and Theoretical Manual for K&C Concrete Model,” K&C Technical Report TR-06-19.1, Karagozian & Case, Burbank, Calif, USA, 2006.
  18. L. J. Malvar, “Review of static and dynamic properties of steel reinforcing bars,” ACI Materials Journal, vol. 95, no. 5, pp. 609–616, 1998. View at Scopus
  19. Y. A. Bahei-El-Din and G. J. Dvorak, “Wave propagation and dispersion in sandwich plates subjected to blast loads,” Mechanics of Advanced Materials and Structures, vol. 14, no. 6, pp. 465–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. W. Hyde, CONWEP-Conventional Weapons Effects Programme, USAEWES, 1992.
  21. T. T. Pham, Behaviour of reinforced concrete panels and their fixing assemblies subject to blast loading [Ph.D. thesis], Department of Civil and Environmental Engineering, The University of Melbourne, Melbourne, Australia, 2010.