About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 901658, 9 pages
http://dx.doi.org/10.1155/2012/901658
Research Article

Performance Evaluation of Warm- and Hot-Mix Asphalt Mixtures Based on Laboratory and Accelerated Pavement Tests

1Highway Research Division, Korea Institute of Construction Technology, (Daehwa-Dong) 283, Goyangdae-Ro, Ilsanseo-Gu, Gyeonggi-Do, Goyang-Si 411-712, Republic of Korea
2Department of Civil Engineering, Chonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonbuk, Jeonju-Si 561-756, Republic of Korea
3Department of Transportation Engineering, Hanyang University, 1271 Sa 1-Dong, Gyeonggi-Do, Ansan-Si 426-791, Republic of Korea

Received 13 February 2012; Revised 3 September 2012; Accepted 17 September 2012

Academic Editor: John A. D'Angelo

Copyright © 2012 Yongjoo Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A number of warm-mix asphalt (WMA) technologies are used to reduce the temperature at which the asphalt mixtures are produced and compacted, apparently without compromising the performance of the pavement. The main objective of this study is to determine whether the use of an innovative wax-based LEADCAP WMA additive influences the performance of the asphalt mixture, which is produced and compacted at significantly low temperatures. The WMA pavement using LEADCAP additive (WMA-LEADCAP) along with a control HMA pavement was evaluated with respect to their performances of rutting resistance, crack resistance, and viscoelastic property based on the laboratory dynamic modulus test, indirect tensile strength test, and in-door accelerated pavement test (APT) results. With the limited data carried out, the LEADCAP additive is effective in producing and paving asphalt mixture at approximately 30°C lower temperature than a control HMA mixture, and the performances of WMA-LEADCAP pavement are comparable to a control HMA pavement.