About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 104914, 6 pages
http://dx.doi.org/10.1155/2013/104914
Research Article

Nonlocal Nonlinear Optical Response of Ionic Liquids under Violet Excitation

1Optics and Materials Group (OPTMA), Universidade Federal de Alagoas, P.O. Box 2051, 57061-970 Maceió, AL, Brazil
2Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil

Received 11 December 2012; Accepted 29 May 2013

Academic Editor: Antonia Pérez de los Ríos

Copyright © 2013 Cássio E. A. Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Dupont, R. F. de Souza, and P. A. Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chemical Reviews, vol. 102, no. 10, pp. 3667–3692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, “High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids,” Applied Physics Letters, vol. 92, no. 10, Article ID 103313, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. E. Song, “Enantioselective chemo- and bio-catalysis in ionic liquids,” Chemical Communications, no. 9, pp. 1033–1043, 2004. View at Publisher · View at Google Scholar
  4. T. Rüther, T. D. Huynh, J. Huang et al., “Correction to stable cycling of lithium batteries using novel boronium-cation-based ionic liquid electrolytes,” Chemistry of Materials, vol. 22, no. 3, pp. 1038–1045, 2010. View at Publisher · View at Google Scholar
  5. H. S. Park, B. G. Choi, S. H. Yang et al., “Ionic-liquid-assisted sonochemical synthesis of carbon-nanotube-based nanohybrids: control in the structures and interfacial characteristics,” Small, vol. 5, no. 15, pp. 1754–1760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and S. R. Teixeira, “Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions,” Journal of the American Chemical Society, vol. 124, no. 16, pp. 4228–4229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. J. Bowlas, D. W. Bruce, and K. R. Seddon, “Liquid-crystalline ionic liquids,” Chemical Communications, no. 14, pp. 1625–1626, 1996. View at Scopus
  8. R. F. Souza, M. A. R. C. Alencar, M. R. Meneghetti, J. Dupont, and J. M. Hickmann, “Nonlocal optical nonlinearity of ionic liquids,” Journal of Physics Condensed Matter, vol. 20, no. 15, Article ID 155102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. E. A. Santos, M. A. R. C. Alencar, P. Migowski, J. Dupont, and J. M. Hickmann, “Anionic and cationic influence on the nonlocal nonlinear optical response of ionic liquids,” Chemical Physics, vol. 403, pp. 33–36, 2012. View at Publisher · View at Google Scholar
  10. C. D. Tran, S. Challa, and M. Franko, “Ionic liquids as an attractive alternative solvent for thermal lens measurements,” Analytical Chemistry, vol. 77, no. 22, pp. 7442–7447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, “Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation,” Journal of Physical Chemistry B, vol. 109, no. 13, pp. 6103–6110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. S. Consorti, P. A. Z. Suarez, R. F. de Souza et al., “Identification of 1,3-dialkylimidazoIium salt supramolecular aggregates in solution,” Journal of Physical Chemistry B, vol. 109, no. 10, pp. 4341–4349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Triolo, O. Russina, B. Fazio, R. Triolo, and E. Di Cola, “Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids,” Chemical Physics Letters, vol. 457, no. 4–6, pp. 362–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Królikowski, O. Bang, N. I. Nikolov et al., “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” Journal of Optics B, vol. 6, no. 5, pp. S288–S294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. V. Mamaev, A. A. Zozulya, V. K. Mezentsev, D. Z. Anderson, and M. Saffman, “Bound dipole solitary solutions in anisotropic nonlocal self-focusing media,” Physical Review A, vol. 56, no. 2, pp. R1110–R1113, 1997. View at Scopus
  16. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Phase-dependent collisions of 2+1-dimensional spatial solitons,” Journal of the Optical Society of America B, vol. 15, no. 7, pp. 2079–2082, 1998. View at Scopus
  17. A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Self-focusing and soliton formation in media with anisotropic nonlocal material response,” Europhysics Letters, vol. 36, no. 6, pp. 419–424, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. P. D. Rasmussen, O. Bang, and W. Krolikowski, “Theory of nonlocal soliton interaction in nematic liquid crystals,” Physical Review E, vol. 72, no. 6, Article ID 066611, 7 pages, 2005. View at Publisher · View at Google Scholar
  19. M. Peccianti, C. Conti, G. Assanto, A. de Luca, and C. Umeton, “Nonlocal optical propagation in nonlinear nematic liquid crystals,” Journal of Nonlinear Optical Physics and Materials, vol. 12, no. 4, pp. 525–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Minzoni, N. F. Smyth, Z. Y. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Physical Review A, vol. 79, no. 6, Article ID 063808, 7 pages, 2009. View at Publisher · View at Google Scholar
  21. G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Physical Review A, vol. 78, no. 1, Article ID 013832, 8 pages, 2008. View at Publisher · View at Google Scholar
  22. S. Skupin, O. Bang, D. Edmundson, and W. Krolikowski, “Stability of two-dimensional spatial solitons in nonlocal nonlinear media,” Physical Review E, vol. 73, no. 6, Article ID 066603, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons,” Physical Review Letters, vol. 95, no. 21, Article ID 213904, 4 pages, 2005. View at Publisher · View at Google Scholar
  24. A. Minovich, D. N. Neshev, A. Dreischuh, W. Krolikowski, and Y. S. Kivshar, “Experimental reconstruction of nonlocal response of thermal nonlinear optical media,” Optics Letters, vol. 32, no. 12, pp. 1599–1601, 2007. View at Scopus
  25. R. Fischer, D. N. Neshev, W. Krolikowski et al., “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Optics Letters, vol. 31, no. 20, pp. 3010–3012, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Boundary effects on the dynamics of higher-order optical spatial solitons in nonlocal thermal media,” Journal of Optics A, vol. 11, no. 9, Article ID 094014, 2009. View at Publisher · View at Google Scholar
  27. B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Physical Review A, vol. 84, no. 5, Article ID 053854, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Peccianti, C. Conti, and G. Assanto, “Optical modulational instability in a nonlocal medium,” Physical Review E, vol. 68, no. 2, Article ID 025692, 4 pages, 2003. View at Publisher · View at Google Scholar
  29. W. J. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nature Physics, vol. 3, no. 1, pp. 46–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Physical Review Letters, vol. 99, no. 4, Article ID 043903, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Ghofraniha, L. S. Amato, V. Folli, S. Trillo, E. DelRe, and C. Conti, “Measurement of scaling laws for shock waves in thermal nonlocal media,” Optics Letters, vol. 37, no. 12, pp. 2325–2327, 2012. View at Publisher · View at Google Scholar
  32. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Physical Review Letters, vol. 98, no. 21, Article ID 213901, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Alfassi, C. Rotschild, and M. Segev, “Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Physical Review A, vol. 80, no. 4, Article ID 041808, 4 pages, 2009. View at Publisher · View at Google Scholar
  34. P. D. Rasmussen, F. H. Bennet, D. N. Neshev et al., “Observation of two-dimensional nonlocal gap solitons,” Optics Letters, vol. 34, no. 3, pp. 295–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Maucher, W. Krolikowski, and S. Skupin, “Stability of solitary waves in random nonlocal nonlinear media,” Physical Review A, vol. 85, no. 6, Article ID 063803, 11 pages, 2012. View at Publisher · View at Google Scholar
  36. D. Neshev, G. McCarthy, W. Krolikowski et al., “Dipole-mode vector solitons in anisotropic nonlocal self-focusing media,” Optics Letters, vol. 26, no. 15, pp. 1185–1187, 2001. View at Scopus
  37. W. Krolikowski, O. Bang, and J. Wyller, “Nonlocal incoherent solitons,” Physical Review E, vol. 70, no. 3, Article ID 036617, 5 pages, 2004. View at Publisher · View at Google Scholar
  38. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE Journal of Quantum Electronics, vol. 26, no. 4, pp. 760–769, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” Journal of Optics A, vol. 1, no. 6, article 662, 1999. View at Publisher · View at Google Scholar
  40. P. Migowski, G. Machado, S. R. Texeira et al., “Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids,” Physical Chemistry Chemical Physics, vol. 9, no. 34, pp. 4814–4821, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. de Souza, and J. Dupont, “The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes,” Polyhedron, vol. 15, no. 7, pp. 1217–1219, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. R. W. Boyd, Nonlinear Optics, Academic Press, San Diego, Calif, USA, 2nd edition, 2003.
  43. R. Ge, C. Hardacre, P. Nancarrow, and D. W. Rooney, “Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K,” Journal of Chemical and Engineering Data, vol. 52, no. 5, pp. 1819–1823, 2007. View at Publisher · View at Google Scholar · View at Scopus