About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 123697, 11 pages
http://dx.doi.org/10.1155/2013/123697
Review Article

Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Received 9 October 2012; Revised 18 January 2013; Accepted 4 February 2013

Academic Editor: J. Paulo Davim

Copyright © 2013 Liu Mei Lee and Ahmad Azmin Mohamad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints,” Journal of Alloys and Compounds, vol. 352, no. 1-2, pp. 226–236, 2003. View at Publisher · View at Google Scholar
  2. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn-Ag-Cu solder on electrolytic Ni BGA substrate,” Journal of Alloys and Compounds, vol. 392, no. 1-2, pp. 247–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Q. Yu and L. Wang, “The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction,” Journal of Alloys and Compounds, vol. 458, no. 1-2, pp. 542–547, 2008. View at Publisher · View at Google Scholar
  4. M. Farooq, S. Ray, A. Sarkhel, and C. Goldsmith, “Evaluation of lead(Pb)-free ceramic ball grid array (CBGA): wettability, microstructure and reliability,” in 51st Electronic Components and Technology Conference, pp. 978–986, usa, June 2001. View at Scopus
  5. S. K. Kang, D. Leonard, D. A. Y. Shih et al., “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition,” Journal of Electronic Materials, vol. 35, no. 3, pp. 479–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. H. Manko, Book Solders and Soldering: Materials, Design, Production, and Analysis for Reliable Bonding, McGraw-Hill, New York, NY, USA, 2001.
  7. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Properties of lead-free solder alloys with rare earth element additions,” Materials Science and Engineering R, vol. 44, no. 1, pp. 1–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. N. Subramanian, Book Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, Springer, 2007.
  9. C. H. Wang and S. W. Chen, “Sn-0.7 wt.%Cu/Ni interfacial reactions at 250°C,” Acta Materialia, vol. 54, no. 1, pp. 247–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Li, C. Liu, and P. P. Conway, “Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn-Ag-Cu flip-chip solder interconnects,” Materials Science and Engineering A, vol. 391, no. 1-2, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. C. Chan and D. Yang, “Failure mechanisms of solder interconnects under current stressing in advanced electronic packages,” Progress in Materials Science, vol. 55, no. 5, pp. 428–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Li-Lei, L. Zonghe, J. Liu, and A. Tholen, “Microstructural coarsening of lead free solder joints during thermal cycling,” in Proceedings of the 50th Electronic Components & Technology Conference, pp. 134–137, 2000.
  13. A. K. Gain, T. Fouzder, Y. C. Chan, A. Sharif, N. B. Wong, and W. K. C. Yung, “The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn-Ag-Cu solder on Au/Ni metallized Cu pads,” Journal of Alloys and Compounds, vol. 506, no. 1, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. H. Manko, Book Solder and Soldering, McGraw-Hill, New York, NY, USA, 1979.
  15. R. J. K. Wassink, Book Soldering in Electronics, Electrochemical Publications, Isle of Man, UK, 1989.
  16. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics,” Materials Science and Engineering R, vol. 27, no. 5, pp. 95–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials,” Materials Science and Engineering R, vol. 49, no. 1-2, pp. 1–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. R. Frear, Book Solder Mechanics: A states of the Art Assessment, Minerals, Metals & Materials Society, Warrendale, Pa, USA, 1991.
  19. L. M. Lee, H. Haliman, and A. A. Mohamad, “Interfacial reaction of a Sn-3.0Ag-0.5Cu thin film during solder reflow,” Soldering & Surface Mount Technology, vol. 25, no. 1, pp. 15–23, 2013.
  20. M. C. Liew, I. Ahmad, L. M. Lee, M. F. M. Nazeri, H. Haliman, and A. A. Mohamad, “Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder in potassium hydroxide electrolyte,” Metallurgical and Materials Transactions A, vol. 43, no. 10, pp. 3742–3747, 2012. View at Publisher · View at Google Scholar
  21. C. Lea, Book a Scientific Guide to Surface Mount Technology, Electrochemical Publications, Ayrshire, Scotland, 1988.
  22. S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu, “Phase diagrams of Pb-free solders and their related materials systems,” Journal of Materials Science, vol. 18, no. 1–3, pp. 19–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. L. Nai, J. Wei, and M. Gupta, “Interfacial intermetallic growth and shear strength of lead-free composite solder joints,” Journal of Alloys and Compounds, vol. 473, no. 1-2, pp. 100–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. K. Kivilahti, “The chemical modeling of electronic materials and interconnections,” JOM, vol. 54, no. 12, pp. 52–57, 2002. View at Scopus
  25. M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lu, and M. N. Islam, “Effect of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging,” Journal of Alloys and Compounds, vol. 407, no. 1-2, pp. 208–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Liu, M. Huang, Y. Zhao, C. M. L. Wu, and L. Wang, “The adsorption of Ag3Sn nano-particles on Cu-Sn intermetallic compounds of Sn-3Ag-0.5Cu/Cu during soldering,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. 433–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F.-J. Wang, Z.-S. Yu, and K. Qi, “Intermetallic compound formation at Sn-3.0Ag-0.5Cu-1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions,” Journal of Alloys and Compounds, vol. 438, no. 1-2, pp. 110–115, 2007.
  28. A. Kar, M. Ghosh, A. K. Ray, and R. N. Ghosh, “Effect of copper addition on the microstructure and mechanical properties of lead free solder alloy,” Materials Science and Engineering A, vol. 459, no. 1-2, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Gao, T. Takemoto, and H. Nishikawa, “Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing,” Materials Science and Engineering A, vol. 420, no. 1-2, pp. 39–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-W. Yoon, B.-I. Noh, B.-K. Kim, C.-C. Shur, and S.-B. Jung, “Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. 142–147, 2009. View at Publisher · View at Google Scholar
  31. J.-W. Yoon and S.-B. Jung, “Effect of surface finish on interfacial reactions of Cu/Sn-Ag-Cu/Cu(ENIG) sandwich solder joints,” Journal of Alloys and Compounds, vol. 448, no. 1-2, pp. 177–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Gagliano and M. E. Fine, “Growth of η phase scallops and whiskers in liquid tin-solid copper reaction couples,” JOM, vol. 53, no. 6, pp. 33–38, 2001. View at Scopus
  33. M. Reid, J. Punch, M. Collins, and C. Ryan, “Effect of Ag content on the microstructure of Sn-Ag-Cu based solder alloys,” Soldering and Surface Mount Technology, vol. 20, no. 4, pp. 3–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Song, J. J. Lin, C. F. Huang, and H. Y. Chuang, “Crystallization, morphology and distribution of Ag3Sn in Sn-Ag-Cu alloys and their influence on the vibration fracture properties,” Materials Science and Engineering A, vol. 466, no. 1-2, pp. 9–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Materials Science and Engineering R, vol. 38, no. 2, pp. 55–105, 2002. View at Scopus
  36. C. T. Sims, N. S. Stoloff, and W. C. Hagel, Book Superalloys II, John Wiley & Sons, New York, NY, USA, 1987.
  37. M. Reid, M. J. Pomeroy, and J. S. Robinson, “Microstructural instability in coated single crystal superalloys,” Journal of Materials Processing Technology, vol. 153-154, no. 1–3, pp. 660–665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu,” Applied Physics Letters, vol. 66, no. 16, pp. 2337–2339, 1995. View at Scopus
  39. H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening,” Physical Review B, vol. 53, no. 23, pp. 16027–16034, 1996. View at Scopus
  40. A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films,” Journal of Applied Physics, vol. 80, no. 5, pp. 2774–2780, 1996. View at Scopus
  41. S. Bader, W. Gust, and H. Hieber, “Rapid formation of intermetallic compounds interdiffusion in the CuSn and NiSn systems,” Acta Metallurgica et Materialia, vol. 43, no. 1, pp. 329–337, 1995. View at Scopus
  42. S. Choi, J. P. Lucas, K. N. Subramanian, and T. R. Bieler, “Formation and growth of interfacial intermetallic layers in eutectic Sn-Ag solder and its composite solder joints,” Journal of Materials Science, vol. 11, no. 6, pp. 497–502, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. P. L. Tu, Y. C. Chan, K. C. Hung, and J. K. L. Lai, “Growth kinetics of intermetallic compounds in chip scale package solder joint,” Scripta Materialia, vol. 44, no. 2, pp. 317–323, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. K. Kang, R. S. Rai, and S. Purushothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders,” Journal of Electronic Materials, vol. 25, no. 7, pp. 1113–1120, 1996. View at Scopus
  45. M. Schaefer, R. A. Fournelle, and J. Liang, “Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control,” Journal of Electronic Materials, vol. 27, no. 11, pp. 1167–1176, 1998. View at Scopus
  46. C. K. Shin, Y. J. Baik, and J. Y. Huh, “Effects of microstructural evolution and intermetallic layer growth on shear strength of ball-grid-array Sn-Cu solder joints,” Journal of Electronic Materials, vol. 30, no. 10, pp. 1323–1331, 2001. View at Scopus
  47. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder,” Journal of Alloys and Compounds, vol. 400, no. 1-2, pp. 136–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation,” Acta Materialia, vol. 45, no. 5, pp. 1867–1874, 1997. View at Scopus
  49. R. A. Lord and A. Umantsev, “Early stages of soldering reactions,” Journal of Applied Physics, vol. 98, no. 6, Article ID 063525, 11 pages, 2005. View at Publisher · View at Google Scholar
  50. J. Görlich, G. Schmitz, and K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction,” Applied Physics Letters, vol. 86, no. 5, Article ID 053106, 3 pages, 2005. View at Publisher · View at Google Scholar
  51. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, “Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging,” Journal of Electronic Materials, vol. 28, no. 11, pp. 1209–1215, 1999. View at Scopus
  52. W. K. Choi and H. M. Lee, “Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate,” Journal of Electronic Materials, vol. 29, no. 10, pp. 1207–1213, 2000. View at Scopus
  53. P. T. Vianco, “An overview of surface finishes and their role in printed circuit board solderability and solder joint performance,” Circuit World, vol. 25, no. 1, pp. 6–24, 1999. View at Scopus
  54. A. J. Sunwoo, J. W. Morris, and G. K. Lucey, “The growth of Cu-Sn intermetallics at a pretinned copper-solder interface,” Metallurgical Transactions A, vol. 23, no. 4, pp. 1323–1332, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. H. L. Reynolds and J. W. Morris, “The role of Cu-Sn intermetallics in wettability degradation,” Journal of Electronic Materials, vol. 24, no. 10, pp. 1429–1434, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. R. E. Pratt, E. I. Stromswold, and D. J. Quesnel, “Effect of solid-state intermetallic growth on the fracture toughness of Cu/63Sn-37Pb solder joints,” IEEE Transactions on Components Packaging and Manufacturing Technology Part A, vol. 19, no. 1, pp. 134–141, 1996. View at Scopus
  57. A. Paul, The kirkendall effect in solid state diffusion [Ph.D. thesis], Eindhoven University of Technology, 2004.
  58. K. Zeng, “Lead-free soldering: materials science and solder joint reliability,” JOM, vol. 61, no. 6, p. 28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Dutta, P. Kumar, and G. Subbarayan, “Microstructural coarsening in Sn-Ag-based solders and its effects on mechanical properties,” JOM, vol. 61, no. 6, pp. 29–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, and C. C. Chen, “Phase transformation and microstructural evolution in solder joints,” JOM, vol. 59, no. 1, pp. 39–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, and J. K. L. Lai, “Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method,” Journal of Alloys and Compounds, vol. 392, no. 1-2, pp. 192–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Mookam and K. Kanlayasiri, “Effect of soldering condition on formation of intermetallic phases developed between Sn-0.3Ag-0.7Cu low-silver lead-free solder and Cu substrate,” Journal of Alloys and Compounds, vol. 509, no. 21, pp. 6276–6279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Y. Li and B. L. Chen, “Formation and Growth Kinetics of Interfacial Intermetallics in Pb-Free Solder Joint,” IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 3, pp. 651–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. C. K. So and Y. C. Chan, “Reliability studies of surface mount solder joints—effect of Cu-Sn intermetallic compounds,” IEEE Transactions on Components Packaging and Manufacturing Technology Part B, vol. 19, no. 3, pp. 661–668, 1996. View at Scopus
  65. W. Peng, E. Monlevade, and M. E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu,” Microelectronics Reliability, vol. 47, no. 12, pp. 2161–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus