About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 137347, 9 pages
http://dx.doi.org/10.1155/2013/137347
Research Article

Study on Microchannel Design and Burst Frequency Detection for Centrifugal Microfluidic System

1Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
2R&D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
3R&D Center for Mold and Molding Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan

Received 19 October 2012; Revised 2 January 2013; Accepted 2 January 2013

Academic Editor: Dachamir Hotza

Copyright © 2013 Yaw-Jen Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2002.
  2. P. F. Man, C. H. Mastrangelo, M. A. Burns, and D. T. Burke, “Microfabricated capillarity-driven stop valve and sample injector,” in Proceedings of the IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, pp. 45–50, January 1998. View at Scopus
  3. M. A. Burns, B. N. Johnson, S. N. Brahmasandra et al., “An integrated nanoliter DNA analysis device,” Science, vol. 282, no. 5388, pp. 484–487, 1998. View at Publisher · View at Google Scholar
  4. M. J. Madou, L. J. Lee, K. W. Koelling, and S. Daunert, “Design and fabrication of polymer microfluidic platforms for biomedical applications,” in Proceedings of the 59th Annual Technical Conference (ANTEC), vol. 3, pp. 2534–2538, Society of Plastics Engineers (SPE), 2001.
  5. M. J. Madou, L. J. Lee, S. Daunert, S. Lai, and C. H. Shih, “Design and fabrication of CD-like microfluidic platforms for diagnostic: mircofluidic functions,” Biomedical Microdevices, vol. 3, no. 3, pp. 245–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. Lee, M. J. Madou, K. W. Koelling et al., “Design and fabrication of CD-like microfluidic platforms for diagnostics: polymer-based microfabrication,” Biomedical Microdevices, vol. 3, no. 4, pp. 339–351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Johnson, I. H. A. Badr, G. Barrett et al., “Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics,” Analytical Chemistry, vol. 73, no. 16, pp. 3940–3946, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Madou, Y. Lu, S. Lai, C. G. Koh, L. J. Lee, and B. R. Wenner, “A novel design on a CD disc for 2-point calibration measurement,” Sensors and Actuators A, vol. 91, pp. 301–306, 2001.
  9. D. S. Kim, K. C. Lee, T. H. Kwon, and S. S. Lee, “Transient filling flow into microchannels considering surface tension,” in Proceedings of the International Conference on Modeling and Simulation of Microsystems (MSM '02), pp. 108–111, April 2002. View at Scopus
  10. D. S. Kim and T. H. Kwon, “Patterning of flow and mixing in rotating radial microchannels,” Microfluidics and Nanofluidics, vol. 2, no. 2, pp. 97–105, 2006.
  11. J. Ducrée, T. Brenner, T. Glatzel, and R. Zengerle, “Ultrafast micromixing by coriolis-induced multi-lamination of centrifugal flow,” in Proceedings of the International Conference on New Actuators, pp. 533–536, 2004.
  12. T. Brenner, T. Glatzel, R. Zengerle, and J. Ducrée, “Frequency-dependent transversal flow control in centrifugal microfluidics,” Lab on a Chip, vol. 5, no. 2, pp. 146–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Brenner, Polymer Fabrication and Microfluidic Unit Operations for Medical Diagnostics on a Rotating Disk [Ph.D. thesis], University of Freiburg-IMTEK, Baden-Württemberg, Germany, 2005.
  14. D. C. Duffy, H. L. Gillis, J. Lin Jr., N. F. Sheppard, and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Analytical Chemistry, vol. 71, no. 20, pp. 4669–4678, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zeng, D. Banerjee, M. Deshpande, J. R. Gilbert, D. C. Duffy, and G. J. Kellogg, “Design analyses of capillary burst valves,” in Proceedings of the Micro-Total Analyses Systems Conference, p. 579, Amsterdam, The Netherlands, May 2000.
  16. J. Zeng, M. Deshpande, K. B. Greiner, and J. R. Gilbert:, “Fluidic capacitance model of capillary-driven stop valves,” in Proceedings of the ASME, Orlando, Fla, USA, 2000.
  17. V. B. Makhijani, A. J. Reich, A. Puntambekar, C. Hong, and C. Ahn, “Simulation of flow in structurally programmable microfluidic channels,” in Proceedings of the International Conference on Modeling and Simulation of Microsystems, pp. 266–269, March 2001. View at Scopus
  18. CFD User Manual, 2003.