About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 149261, 8 pages
http://dx.doi.org/10.1155/2013/149261
Research Article

Physicochemical and Microstructural Characterization of Injectable Load-Bearing Calcium Phosphate Scaffold

1Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan
2Department of Physics, College of Science and Humanitarian Studies, Salman Bin Abdul Aziz University, P.O. Box 83, Alkharj 11942, Saudi Arabia
3Department of Chemistry, The University of Jordan, Amman 11942, Jordan
4Faculty of Medicine, The University of Jordan, Amman 11942, Jordan

Received 20 July 2013; Revised 19 October 2013; Accepted 30 October 2013

Academic Editor: Wei Wu

Copyright © 2013 Mazen Alshaaer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Injectable load-bearing calcium phosphate scaffolds are synthesized using rod-like mannitol grains as porogen. These degradable injectable strong porous scaffolds, prepared by calcium phosphate cement, could represent a valid solution to achieve adequate porosity requirements while providing adequate support in load-bearing applications. The proposed process for preparing porous injectable scaffolds is as quick and versatile as conventional technologies. Using this method, porous CDHA-based calcium phosphate scaffolds with macropores sizes ranging from 70 to 300 μm, micropores ranging from 5 to 30 μm, and 30% open macroporosity were prepared. The setting time of the prepared scaffolds was 15 minutes. Also their compressive strength and e-modulus, 4.9 MPa and 400 MPa, respectively, were comparable with those of the cancellous bone. Finally, the bioactivity of the scaffolds was confirmed by cell growth with cytoplasmic extensions in the scaffolds in culture, demonstrating that the scaffold has a potential for MSC seeding and growth architecture. This combination of an interconnected macroporous structure with pore size suitable for the promotion of cell seeding and proliferation, plus adequate mechanical features, represents a porous scaffold which is a promising candidate for bone tissue engineering.