About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 187636, 6 pages
http://dx.doi.org/10.1155/2013/187636
Research Article

An Inverse Method to Reconstruct Complete Stiffness Information of Rubber Bushing

1Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Chongqing University of Technology, Ministry of Education, Chongqing 400054, China
2Faculty of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

Received 7 July 2013; Accepted 23 August 2013

Academic Editor: Xing Chen

Copyright © 2013 Gang Lei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A specific rubber bushing, with only radial and axial stiffness data having been acquired, is studied. In terms of the hyperelastic material of this bushing, three-term Ogden law is utilized as the material constitutive model which requires to be characterized. Without the material mechanical tests provided, a parameter identification method is proposed for searching a group of acceptable parameters which are able to model rubber-like material of this rubber bushing. In this case, based on the nonlinear finite element analysis method and optimization technique, the parameters of material law are determined, and the rotational stiffness of this bushing is also evaluated. The complete stiffness information has been established.