About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 192484, 11 pages
http://dx.doi.org/10.1155/2013/192484
Research Article

Reduction of Maximum and Residual Drifts on Posttensioned Steel Frames with Semirigid Connections

1Coordinación de Mecánica Aplicada, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
2Facultad de Ingeniería, Universidad Autónoma de Sinaloa, Calzada de las Américas y Boulevard Universitarios S/N, Ciudad Universitaria, 80040 Culiacán, Sinaloa, Mexico

Received 24 October 2012; Revised 8 January 2013; Accepted 8 January 2013

Academic Editor: John W. Gillespie

Copyright © 2013 Arturo López-Barraza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Ricles, R. Sause, M. Garlock, and C. Zhao, “Post-tensioned seismic-resistant connections for steel frames,” Journal of Structural Engineering, vol. 127, no. 2, pp. 113–121, 2001.
  2. J. M. Ricles, R. Sause, S. W. Peng, and L. W. Lu, “Experimental evaluation of earthquake resistant posttensioned steel connections,” Journal of Structural Engineering, vol. 128, no. 7, pp. 850–859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Christopoulos, A. Filiatrault, and C. M. Uang, “Self-centering post-tensioned energy dissipating (PTED) steel frames for seismic regions,” Tech. Rep. SSRP-2002/06, University of California, 2002.
  4. C. Christopoulos and A. Filiatrault, “Seismic response of post-tensioned energy dissipating moment resisting steel frames,” in Proceedings of the 12th European Conference on Earthquake Engineering, no. 61, London, UK, 2002.
  5. M. Garlock, J. Ricles, and R. Sause, “Experimental studies on full-scale post tensioned steel connections,” Journal of Structural Engineering, vol. 131, no. 3, pp. 438–448, 2005.
  6. M. Garlock, R. Sause, and J. Ricles, “Behavior and design of post-tensioned steel frames system,” Journal of Structural Engineering, vol. 133, no. 3, pp. 389–399, 2007.
  7. M. M. Garlock, J. M. Ricles, and R. Sause, “Influence of design parameters on seismic response of post-tensioned steel MRF systems,” Engineering Structures, vol. 30, no. 4, pp. 1037–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Rojas, J. M. Ricles, and R. Sause, “Seismic performance of post-tensioned steel moment resisting frames with friction devices,” Journal of Structural Engineering, vol. 131, no. 4, pp. 529–540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-C. Chou and J. H. Chen, “Column restraint in post-tensioned self-centering moment frames,” Earthquake Engineering and Structural Dynamics, vol. 39, no. 7, pp. 751–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-C. Chou and J. H. Chen, “Tests and analyses of a full-scale post-tensioned RCS frame subassembly,” Journal of Constructional Steel Research, vol. 66, no. 11, pp. 1354–1365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-C. Chou and J.-H. Chen, “Seismic design and shake table test of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion,” Earthquake Engineering and Structural Dynamics, vol. 40, pp. 1241–1261, 2011.
  12. C. C. Chou and J. H. Chen, “Analytical model validation and influence of column bases for seismic responses of steel post-tensioned self-centering MRF systems,” Engineering Structures, vol. 33, no. 9, pp. 2628–2643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Bojórquez and S. E. Ruiz, “Strength reduction factors for the valley of Mexico taking into account low cycle fatigue effects,” in Proceedings of the 13th World Conference on Earthquake Engineering, no. 516, Vancouver, Canada, 2004.
  14. A. Teran-Gilmore and J. O. Jirsa, “Energy demands for seismic design against low-cycle fatigue,” Earthquake Engineering and Structural Dynamics, vol. 36, no. 3, pp. 383–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Bojórquez, A. Reyes-Salazar, A. Terán-Gilmore, and S. E. Ruiz, “Energy-based damage index for steel structures,” Steel and Composite Structures, vol. 10, no. 4, pp. 343–360, 2010.
  16. E. Bojórquez, A. Terán-Gilmore, S. E. Ruiz, and A. Reyes-Salazar, “Evaluation of structural reliability of steel frames: inter-story drifts versus plastic hysteretic energy,” Earthquake Spectra, vol. 27, no. 3, pp. 661–682, 2011.
  17. G. A. Macrae and K. Kawashima, “Post-earthquake residual displacements of bilinear oscillators,” Earthquake Engineering and Structural Dynamics, vol. 26, no. 7, pp. 701–716, 1997. View at Scopus
  18. C. Christopoulos, S. Pampanin, and M. J. N. Priestley, “Performance-based seismic response of frame structures including residual deformations. Part I: single-degree of freedom systems,” Journal of Earthquake Engineering, vol. 7, no. 1, pp. 97–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ruiz-García and E. Miranda, “Residual displacement ratios for assessment of existing structures,” Earthquake Engineering and Structural Dynamics, vol. 35, no. 3, pp. 315–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Pampanin, C. Christopoulos, and M. J. N. Priestley, “Performance-based seismic response of frame structures including residual deformations. Part II: multi-degree of freedom systems,” Journal of Earthquake Engineering, vol. 7, no. 1, pp. 119–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. McCormick, H. Aburano, M. Ikenaga, and M. Nakashima, “Permissible residual deformation levels for building structures considering both safety and human elements,” in Proceedings of the 14th Conference on Earthquake Engineering, Beijing, China, October 2008.
  22. E. Bojórquez and Ruiz-García, “Residual drift demands in moment-resisting steel frames subjected to narrow-band earthquake ground motions,” Earthquake Engineering and Structural Dynamics. In press.
  23. Mexico City Building Code, “Reglamento de Construcciones para el Distrito Federal (In Spanish),” 2004.
  24. J. Shen and A. Astaneh-Asl, “Hysteretic behavior of bolted-angle connections,” Journal of Constructional Steel Research, vol. 51, no. 3, pp. 201–218, 1999. View at Scopus
  25. R. M. Richard and B. J. Abbott, “Versatile elastic plastic stress-strain formula,” Journal of Engineering Mechanics, vol. 101, no. 4, pp. 511–515, 1975.
  26. A. Carr, RUAUMOKO Inelastic Dynamic Analysis Program, University of Canterbury, Department of Civil Engineering, 2011.
  27. M. D. Trifunac and A. G. Brady, “A study of the duration of strong earthquake ground motion,” Bulletin of the Seismological Society of America, vol. 65, no. 3, pp. 581–626, 1975.
  28. E. Bojórquez, I. Iervolino, and G. Manfredi, “Evaluating a new proxy for spectral shape to be used as an intensity measure,” in Proceedings of the Seismic Engineering International Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake (MERCEA ’08), 2008.
  29. E. Bojórquez and I. Iervolino, “Spectral shape proxies and nonlinear structural response,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 996–1008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Bojórquez, I. Iervolino, A. Reyes-Salazar, and S. E. Ruiz, “Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions,” Engineering Structures, vol. 45, pp. 472–480, 2012.
  31. D. Vamvatsikos and C. A. Cornell, “Incremental dynamic analysis,” Earthquake Engineering and Structural Dynamics, vol. 31, no. 3, pp. 491–514, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Montiel and S. E. Ruiz, “Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions,” Earthquake Engineering and Structural Dynamics, vol. 36, no. 13, pp. 1915–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus