About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 214506, 9 pages
http://dx.doi.org/10.1155/2013/214506
Research Article

Manufacture of Green-Composite Sandwich Structures with Basalt Fiber and Bioepoxy Resin

1Instituto de Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata, Av. J.B. Justo 4302, B7608FDQ Mar del Plata, Argentina
2Universidad Politécnica de Valencia, Camino Vera s/n, 46022 Valencia, Spain
3Universitat Jaume I, Avenida de Vicent Sos Baynat, 12071 Castellón, Spain

Received 8 March 2013; Accepted 7 May 2013

Academic Editor: Belal F. Yousif

Copyright © 2013 J. P. Torres et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Q. Liu, W. Huang, Y. H. Jiang, J. Zhu, and C. Z. Zhang, “Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts,” Express Polymer Letters, vol. 6, no. 4, pp. 293–298, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ratna, “Mechanical Properties and Morphology of epoxidized syabean-oil-modified epoxy resin,” Polymer International, vol. 50, pp. 179–184, 2001.
  3. M. Haq, R. Burgueño, A. K. Mohanty, and M. Misra, “Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: tensile properties, efficiency, and limits,” Composites A, vol. 40, no. 4, pp. 394–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Miyagawa, A. K. Mohanty, R. Burgueño, L. T. Drzal, and M. Misra, “Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin,” Journal of Polymer Science B, vol. 45, no. 6, pp. 698–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Liu, Basalt fiber reinforced polymer composites [Ph.D. thesis], University of Connecticut, 2006.
  6. V. Fiore, G. Di Bella, and A. Valenza, “Glass-basalt/epoxy hybrid composites for marine applications,” Materials and Design, vol. 32, no. 4, pp. 2091–2099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Lopresto, C. Leone, and I. De Iorio, “Mechanical characterisation of basalt fibre reinforced plastic,” Composites Part B, vol. 42, no. 4, pp. 717–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. García, L. Gascón, E. Cueto, I. Ordeig, and F. Chinesta, “Meshless methods with application to Liquid Composite Molding simulation,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 33–36, pp. 2700–2709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Arbter, J. M. Beraud, C. Binetruy et al., “Experimental determination of the permeability of textiles: a benchmark exercise,” Composites A, vol. 42, no. 9, pp. 1157–1168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Ferland, D. Guittard, and F. Trochu, “Concurrent methods for permeability measurement in resin transfer molding,” Polymer Composites, vol. 17, no. 1, pp. 149–158, 1996. View at Scopus
  11. K. Hoes, D. Dinescu, H. Sol et al., “New set-up for measurement of permeability properties of fibrous reinforcements for RTM,” Composites A, vol. 33, no. 7, pp. 959–969, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. http://www.entropyresins.com/products/super-sap-1001000.
  13. R. Masoodi, R. F. El-Hajjar, K. M. Pillai, and R. Sabo, “Mechanical characterization of cellulose nanofiber and bio-based epoxy composite,” Materials and Design, vol. 36, pp. 570–576, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Vinson, The Behavior of Sandwich Structures of Isotropic and Composite Materials, CRC Press, 1999.