About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 307207, 6 pages
http://dx.doi.org/10.1155/2013/307207
Research Article

Analysis and Testing of MR Shear Transmission Driven by SMA Spring

1College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400050, China
2College of Vehicle Engineering, Chongqing University of Technology, Chongqing 400050, China

Received 11 July 2013; Accepted 27 August 2013

Academic Editor: Xing Chen

Copyright © 2013 Jin Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Kim, Y. D. Liu, B. J. Park, C.-Y. You, and H. J. Choi, “Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 2, pp. 664–667, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zhang, J.-Q. Zhang, and J.-F. Jia, “Characteristic analysis of magnetorheological fluid based on different carriers,” Journal of Central South University of Technology, vol. 15, no. 1, pp. 252–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Shafer and M. R. Kermani, “On the feasibility and suitability of mr fluid clutches in human-friendly manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 6, pp. 1073–1082, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Kikuchi, K. Otsuki, J. Furusho et al., “Development of a compact magnetorheological fluid clutch for human-friendly actuator,” Advanced Robotics, vol. 25, no. 9-10, pp. 1363–1363, 2011.
  5. P. Kielan, P. Kowol, and Z. Pilch, “Conception of the electronic controlled magnetorheological clutch,” Przeglad Elektrotechniczny, vol. 87, no. 3, pp. 93–95, 2011. View at Scopus
  6. J. Huang, L. Fu, and L. Zhong, “Analysis of a magnetorheological transmission for fan clutch,” Advanced Materials Research, vol. 287-290, pp. 173–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Herold, D. Libl, and J. Deur, “Design and testing of an experimental magnetorheological fluid clutch,” Strojarstvo, vol. 52, no. 6, pp. 601–614, 2010. View at Scopus
  8. J. Huang, J. Q. Zhang, Y. Yang, and Y. Q. Wei, “Analysis and design of a cylindrical magneto-rheological fluid brake,” Journal of Materials Processing Technology, vol. 129, no. 1-3, pp. 559–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Farjoud, N. Vahdati, and Y. F. Fah, “Mathematical model of drum-type MR brakes using herschel-bulkley shear model,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 5, pp. 565–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Huang, J. He, and G. Lu, “Analysis and design of magnetorheological damper,” Advanced Materials Research, vol. 148-149, pp. 882–886, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. X. C. Zhu, X. J. Jing, and L. Cheng, “Magnetorheological fluid dampers: a review on structure design and analysis,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 8, pp. 839–873, 2012.
  12. E. Dragašius, V. Grigas, D. Mažeika, and A. Šulginas, “Evaluation of the resistance force of magnetorheological fluid damper,” Journal of Vibroengineering, vol. 14, no. 1, pp. 1–6, 2012. View at Scopus
  13. M. Y. Salloom and Z. Samad, “Design and modeling magnetorheological directional control valve,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 2, pp. 155–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Huang, J. M. He, and J. Q. Zhang, “Viscoplastic flow of the MR fluid in a cylindrical valve,” Key Engineering Materials, vol. 274-276, no. 1, pp. 969–974, 2004. View at Scopus
  15. G. Costanza, M. E. Tata, and C. Calisti, “Nitinol one-way shape memory springs: thermomechanical characterization and actuator design,” Sensors and Actuators A, vol. 157, no. 1, pp. 113–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Huang, M. Leary, T. Ataalla, K. Probst, and A. Subic, “Optimisation of Ni-Ti shape memory alloy response time by transient heat transfer analysis,” Materials and Design, vol. 35, pp. 655–663, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Langbein and A. Czechowicz, “Adaptive resetting of SMA actuators,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 2, pp. 127–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Degeratu, P. Rotaru, G. Manolea, H. O. Manolea, and A. Rotaru, “Thermal characteristics of Ni-Ti SMA (shape memory alloy) actuators,” Journal of Thermal Analysis and Calorimetry, vol. 97, no. 2, pp. 695–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ma, H. Shu, and J. Huang, “MR continuously variable transmission driven by SMA for centrifugal fan in nuclear power plant,” Science and Technology of Nuclear Installations, vol. 2012, Article ID 205675, 6 pages, 2012. View at Publisher · View at Google Scholar
  20. J. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4, pp. 555–569, 2000. View at Publisher · View at Google Scholar · View at Scopus