About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 326713, 12 pages
Research Article

Experimental and Theoretical Investigations of the Impact Localization of a Passive Smart Composite Plate Fabricated Using Piezoelectric Materials

1Solar Energy Research Institute (SERI), National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Department of Mechanical and Manufacturing Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3SEFB, COB, University Utara Malaysia (UUM), 6010 Sintok, Kedah, Malaysia

Received 18 February 2013; Revised 6 May 2013; Accepted 8 May 2013

Academic Editor: Mohd Sapuan Salit

Copyright © 2013 M. M. S. Dezfouli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Two passive smart composite plates are fabricated using one and two PZT patches that are cheaper than the PZT wafer. The composite plate is fabricated in low temperature through the hand lay-up method to avoid PZT patch decoupling and wire spoiling. The locus of the impact point is identified using the output voltage to identify the impact location using one sensor. The output voltages of the sensors are analyzed to identify the impact location using two sensors. The locations of the impacts are determined based on the crossing points of two circles and the origin of an intended Cartesian coordinate system that is concentric with one of the sensors. This study proposes the impact location identification of the passive smart composite using the low-cost PZT patch PIC155 instead of common embedded materials (wafer and element piezoelectric).