About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 391267, 9 pages
http://dx.doi.org/10.1155/2013/391267
Research Article

Thermal and Cure Kinetics of Epoxy Molding Compounds Cured with Thermal Latency Accelerators

Department of Chemical and Materials Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung 811, Taiwan

Received 30 November 2012; Accepted 14 January 2013

Academic Editor: Roham Rafiee

Copyright © 2013 Chean-Cheng Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Ryu, K. S. Choi, and W. G. Kim, “Latent catalyst effects in halogen-free epoxy molding compounds for semiconductor encapsulation,” Journal of Applied Polymer Science, vol. 96, no. 6, pp. 2287–2299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. H. Hsiue, Y. L. Liu, and H. H. Liao, “Flame-retardant epoxy resins: an approach from organic-inorganic hybrid nanocomposites,” Journal of Polymer Science A, vol. 39, no. 37, pp. 986–996, 2001.
  3. N. Kinjo, M. Ogata, K. Nishi, and A. Kaneda, “Epoxy molding compounds as encapsulation materials for microelectronic devices,” Advanced Polymer Science, vol. 88, no. 1, pp. 1–48, 1989.
  4. Y. Nakamura, M. Yamaguchi, A. Tanaka, and M. Okubo, “Thermal shock test of integrated circuit packages sealed with epoxy moulding compounds filled with spherical silica particles,” Polymer, vol. 34, no. 15, pp. 3220–3224, 1993. View at Scopus
  5. H. F. Mark, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, New York, NY, USA, 3rd edition, 2007.
  6. A. Romanchick and J. F. Geibel, “Synthesis of solid rubber-modified epoxy resins,” Organic Coatings and Applied Polymer Science Processing, vol. 46, no. 2, pp. 410–415, 1982.
  7. A. M. Tomuta, X. Ramis, and F. Ferrando, “The use of dihydrazides as latent curing agents in diglycidyl ether of bisphenol A coatings,” Progress in Organic Coatings, vol. 74, no. 1, pp. 59–66, 2012.
  8. I. Glavchev, K. Petrova, and I. Devedjiev, “Determination of the rate of cure of epoxy resin/maleic anhydride/Lewis acids,” Polymer Testing, vol. 21, no. 1, pp. 89–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. S. Wang and C. Kwag, “Cure kinetics of an epoxy-anhydride-imidazole resin system by isothermal DSC,” Polymers and Polymer Composites, vol. 14, no. 5, pp. 445–454, 2006. View at Scopus
  10. Z. Ma and J. Gao, “Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine,” Journal of Physical Chemistry B, vol. 110, no. 25, pp. 12380–12383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Nakaya, M. Shimbo, and T. Takahama, “Effects of tertiary amine accelerators on curing of epoxide resins,” Journal of Polymer Science B, vol. 24, no. 9, pp. 1931–1941, 1986.
  12. A. Srivastava, N. Pal, S. Agarwal, and J. S. P. Rai, “Kinetics and mechanism of esterification of epoxy resin with methacrylic acid in the presence of tertiary amines,” Advances in Polymer Technology, vol. 24, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Niino, S. Noguchi, Y. Nakano, and S. Tazuke, “Aminimide as hardener/curing promotor for one part epoxy resin composition,” Journal of Applied Polymer Science, vol. 27, no. 7, pp. 2361–2368, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. X. D. Liu, M. Kimura, A. Sudo, and T. Endo, “Accelerating effects of N-aryl-N′,N′-dialkyl ureas on epoxy-dicyandiamide curing system,” Journal of Polymer Science A, vol. 48, no. 23, pp. 5298–5305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. N. Son and C. D. Weber, “Some aspects of monuron-accelerated dicyandiamide cure of epoxy resins,” Journal of Applied Polymer Science, vol. 17, no. 5, pp. 1305–1313, 1973.
  16. M. Kobayashi, F. Sanda, and T. Endo, “Substituent effect of (triphenylphosphinemethylene)boranes on latent catalytic activity for polyaddition of bisphenol a diglycidyl ether with bisphenol a: model system of epoxy-novolac resin,” Macromolecules, vol. 35, no. 2, pp. 346–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Han, W. G. Kim, H. G. Yoon, and T. J. Moon, “Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners,” Journal of Polymer Science A, vol. 36, no. 5, pp. 773–783, 1998. View at Scopus
  18. W. G. Kim, J. Y. Lee, and K. Y. Park, “Curing reaction of o-cresol novolac epoxy resin according to hardener change,” Journal of Polymer Science A, vol. 31, no. 3, pp. 633–639, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ogata, N. Kinjo, S. Eguchi, H. Hozoji, T. Kawata, and H. Sashima, “Effects of curing accelerators on physical properties of epoxy molding compound (EMC),” Journal of Applied Polymer Science, vol. 44, no. 10, pp. 1795–1805, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Su, C. H. Wei, and C. C. Yang, “Elucidating how advanced organophosphine accelerators affect molding compounds,” Industrial & Engineering Chemistry, 2013. View at Publisher · View at Google Scholar
  21. W. G. Kim and J. H. Ryu, “Physical properties of epoxy molding compound for semiconductor encapsulation according to the coupling treatment process change of silica,” Journal of Applied Polymer Science, vol. 65, no. 10, pp. 1975–1982, 1997. View at Scopus
  22. C. C. Su and E. M. Woo, “Cure kinetics and morphology of amine-cured tetraglycidyl-4,4′-diaminodiphenylmethane epoxy blends with poly(ether imide),” Polymer, vol. 36, no. 15, pp. 2883–2894, 1995. View at Scopus
  23. C. C. Su, Y. P. Huang, and E. M. Woo, “Curing kinetics and reaction-induced homogeneity in networks of poly(4-vinyl phenol) and diglycidylether epoxide cured with amine,” Polymer Engineering and Science, vol. 45, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. Su and E. M. Woo, “Diffusion-controlled reaction mechanisms during cure in polycarbonate-modified epoxy networks,” Journal of Polymer Science B, vol. 35, no. 13, pp. 2141–2150, 1997. View at Scopus
  25. K. C. Cole, J. J. Hechler, and D. Noël, “A new approach to modeling the cure kinetics of epoxy amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone,” Macromolecules, vol. 24, no. 11, pp. 3098–3110, 1991. View at Scopus
  26. H. S. Fogler, Essentials of Chemical Reaction Engineering, Pearson Education, New York, NY, USA, 4th edition, 2011.