About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 392450, 8 pages
http://dx.doi.org/10.1155/2013/392450
Research Article

Study on Tensile Properties of Nanoreinforced Epoxy Polymer: Macroscopic Experiments and Nanoscale FEM Simulation Prediction

1Smart Structures and Advanced Composites Laboratory, College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong

Received 15 February 2013; Revised 20 April 2013; Accepted 20 April 2013

Academic Editor: Rui Huang

Copyright © 2013 Zhenqing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Jun, M. S. Mo, X. S. Du, S. R. Dai, and I. Luck, “Study of epoxy toughened by in situ formed rubber nanoparticles,” Journal of Applied Polymer Science, vol. 110, no. 1, pp. 304–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ma, M.-S. Mo, X.-S. Du, P. Rosso, K. Friedrich, and H.-C. Kuan, “Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems,” Polymer, vol. 49, no. 16, pp. 3510–3523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L.-C. Tang, H. Zhang, S. Sprenger, L. Ye, and Z. Zhang, “Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles,” Composites Science and Technology, vol. 72, pp. 558–565, 2012.
  4. S. Deng, J. Zhang, L. Ye, and J. Wu, “Toughening epoxies with halloysite nanotubes,” Polymer, vol. 49, no. 23, pp. 5119–5127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Zhao, L. S. Schadler, H. Hillborg, and T. Auletta, “Improvements and mechanisms of fracture and fatigue properties of well-dispersed alumina/epoxy nanocomposites,” Composites Science and Technology, vol. 68, no. 14, pp. 2976–2982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. H. Hsieh, A. J. Kinloch, K. Masania, J. Sohn Lee, A. C. Taylor, and S. Sprenger, “The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles,” Journal of Materials Science, vol. 45, no. 5, pp. 1193–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. N. A. Siddiqui, E. L. Li, M.-L. Sham et al., “Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating: effects of CNT morphology and dispersion state,” Composites A, vol. 41, no. 4, pp. 539–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Jingchao, L. Xiaobing, Z. Hualin, Y. Yahui, and F. Wanli, “Study of epoxy Resin Reinf orced and Toughened by nm SiO2,” Chinese Journal of Colloid & Polymer, vol. 18, no. 4, pp. 15–17, 2000.
  9. C. Huang, Y. Zhang, S. Fu, and L. Li, “Mechanical properties of epoxy composites filled with SiO2 nano particles at room and cryogenic temperatures,” Acta Materiae Compositae Sinica, vol. 21, no. 4, pp. 77–81, 2004. View at Scopus
  10. M. Bakar, I. Wojtania, I. Legocka, and J. Gospodarczyk, “Property enhancement of epoxy resins by using a combination of polyamide and montmorillonite,” Advances in Polymer Technology, vol. 26, no. 4, pp. 223–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Carballeira and F. Haupert, “Toughening effects of titanium dioxide nanoparticles on TiO2/epoxy resin nanocomposites,” Polymer Composites, vol. 31, no. 7, pp. 1241–1246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Wetzel, P. Rosso, F. Haupert, and K. Friedrich, “Epoxy nanocomposites—fracture and toughening mechanisms,” Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2375–2398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Liu, H.-J. Sue, Z. J. Thompson et al., “Effect of crosslink density on fracture behavior of model epoxies containing block copolymer nanoparticles,” Polymer, vol. 50, no. 19, pp. 4683–4689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg, and T. Auletta, “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy,” Composites Science and Technology, vol. 68, no. 14, pp. 2965–2975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A. C. Taylor, and S. Sprenger, “Toughening mechanisms of nanoparticle-modified epoxy polymers,” Polymer, vol. 48, no. 2, pp. 530–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Kawaguchi and R. A. Pearson, “The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding conditions part 2. A microscopic study on toughening mechanism,” Composites Science and Technology, vol. 64, no. 13-14, pp. 1991–2007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kawaguchi and R. A. Pearson, “The effect of particle-matrix adhesion on the mechanical behaviour of glass filled epoxies. Part 2. A study on fracture toughness,” Polymer, vol. 44, pp. 4239–4247, 2004.
  18. J. C. Halpin, “Stiffness and expansion estimates for oriented short fiber composites,” Journal of Composite Materials, vol. 3, pp. 732–734, 1969.
  19. J. C. Halpin and S. W. Tsai, “Effects of environmental factors on composite materials,” Tech. Rep. 67-423, 1969, AFML-TR.
  20. E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics, vol. 16, pp. 20–25, 1945.
  21. U. J. Counto, “Effect of the elastic modulus, creep and creep recovery of concrete,” Magazine of Concrete Research, vol. 16, pp. 129–138, 1964.
  22. T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, vol. 45, no. 5, pp. 601–620, 1999. View at Scopus
  23. K. J. Pascoe, An Introduction to the Properties of Engineering Materials, Van Nostrand Reinhold, London, UK, 3rd edition, 1978.